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ABSTRACT

Surface code is an important class of topological quantum error correction codes that utilizes geometrical properties of stabilizers
to detect and correct quantum errors by measuring the error syndromes. Though surface code is an effective strategy for fault-
tolerant quantum computing, the fragile nature of qubits and noisy gate operations reduces the reliability of syndrome
measurement. Various machine learning algorithms and their quantum counterparts have recently exhibited phenomenal
superiority in quantum error correction tasks. In this research study, we have proposed a hybrid machine learning approach
consisting of the Quantum Approximation Optimization Algorithm (QAOA) and Quantum Neural Networks (QNN) to enhance
the effectiveness of the syndrome decoding in surface codes. The performance of the proposed hybrid machine learning model is
compared with existing surface code decoding methods viz. Neural Networks (NN) and Coevolutionary Neural Networks (CNN)
for code distance of D; = (3,5,7) and D, = (5,7,9) which shows that the hybrid approach achieves a higher threshold of 0.176
and 0.178, respectively. This superiority of the hybrid quantum machine learning model in decoding syndrome for surface codes
will be pivotal in the development of a practical, scalable, and robust quantum error correction framework.

Keywords: Quantum error correction codes, hybrid quantum machine learning model, surface code, syndrome measurement, quantum

approximate optimization, quantum neural networks.

1. 1. INTRODUCTION

Quantum computing is a paradigm shift in the information
science landscape that offers unbounded and unparalleled
computational powers. The success of such a phenomenal
computational approach primarily depends upon the feat of
quantum error correction (QEC) [1] to protect the information
(quantum state). The errors appearing in the quantum systems
are inherently different from their classical counterparts and
their copying and simultaneous measurement are impossible.
This issue can be overcome by developing effective quantum
error-correcting codes by suppressing several physical qubits
into a single logical qubit by introducing redundant (ancilla)
qubits and decoding them to extract the original information
and errors through syndrome measurement [2]. This is typically
accomplished by encoding a single logical qubit with numerous
physical qubits to minimize error-proneness while retaining the
ability to manipulate and measure the logical qubit [1,2]. Such
QEC codes allow the execution of quantum calculations in a
noisy environment with errors below a limit set by the
"quantum error threshold theorem".

Surface code is a topological code that utilizes global
geometrical properties of error-correcting stabilizers for
quantum error mitigation by encoding physical qubits into
logical qubits and decoding by measuring the syndrome with
ancilla without disturbing the original quantum state
(information) [3]. Apart from physical errors, the logical qubits
may also be exposed to errors, if not processed carefully, and
such an error is known as a logical error. Regretfully, qubits are
exceptionally sensitive to their environment, and their data may
be lost due to decoherence or collapse of the quantum state
during syndrome measurement [3,4]. The errors may also
propagate among the encoded faulty physical qubits through
qubit crosstalk and decoherence. Therefore, optimal decoding
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to keep the physical-to-logical error ratio minimum is also
challenging in the surface codes [5,6]. Various decoders and
approximation schemes have been developed to overcome the
issues, but none is a flawless tool [7,8,9].

Various artificial intelligence (AI) approaches have recently
been explored to decode the surface codes, yielding a promising
result in overcoming the syndrome measurement issue in
surface codes [9,10]. Such machine learning (ML) approaches
convert the syndrome detection problem into a classification
problem where various traditional methods, such as neural
networks (NN) and convolution neural networks (CNN), are
available for effective delivery [11]. A hybrid classical-
quantum algorithm known as the quantum approximate
optimization algorithm (QAOA) is also an effective tool to
solve combinatorial optimization problems on noisy
intermediate-scale quantum computers [12]. QAOA has the
ability to find the approximate solutions by minimizing the cost
function, while QNN trains the system by using multiple layers
of stochastic gradient descent, leveraging the principles of
quantum mechanics for potential speedups. Therefore, QAOA
and QNN hold complementary properties in the machine
learning domain, which can be explored collectively for
quantum speed-up of a system involving a complex
Hamiltonian.

This research aims to develop a hybrid machine learning model
by leveraging the complementary powers of QAOA and QNN
to enhance the accuracy, scalability, and efficiency in syndrome
decoding for robust quantum error correction. The QAOA
module in the model will optimize the task by fine-tuning the
parameters while the QNN module learns the system from past
data for effective syndrome decoding without undergoing the
complex intricacies of ansatz in surface codes. In the rest of this
paper, section 2 carried out a systematic review of the most
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recent literature in the regime of machine learning for the
syndrome decoding task. This section will present an account
of the existing research gap in the literature as motivation for
the present study. Section 3 will present the research
methodology adopted in this paper and the terms required for a
proper understanding of the subject matter. Section 4 will
implement the proposed model with an analytical discussion on
the implementation results. Finally, section 5 will conclude the
paper with meaningful inferences and present an account of the
future direction of research in this regime.

2. LITERATURE REVIEW

This section reviews the academic and scholastic literature on
the state-of-the-art methods and approaches in the domain of
syndrome decoding through machine learning approaches. M.
Swathi and B. Rudra developed a reproducible and asymmetric
approach for identifying and mitigating phase-flip and bit error
correction. Fixing the issue using this method was simple by
applying the same error again. The suggested procedure is
effective in overcoming the decoherence and noise surmounted
due to entanglement [13]. A. Li et al. used a CNN with a
hexagonal code to determine the decoding threshold. However,
their decoder enhances the performance while performing
poorly in terms of latency and resource utilization [14]. The
work of D. Bhoumik et al. provided an ML decoder for surface
codes, which can rectify the depolarizing noise in symmetric
and asymmetric minimum train-test [15]. M. Sheth et al
combined the arbitrary decoders to lower the rates of logical
errors [16] drastically. R.-W.J. Overwater et al. explored fully
connected NN decoders for short-range surface codes. The
research aims to achieve competitive decoding performance
while minimizing the neural network's complexity. The model
works well for large data sizes while exhibiting overfitting for
small data sizes [17]. B. Debasmita et al. introduced an ML
decoder for topological code that enhances decoding
performance by utilizing a revolutionary gauge equivalency-
based method. The physical error probability serves as the
pseudo-threshold for a QEC code [18]. Research by C. Kim et
al. is more relevant to NISQ era requirements. They have
developed ML-based quantum error mitigation techniques to
reduce the errors without the requirement of comprehensive
error characterization [19]. Savvas Varsamopoulos et al.
applied a distributed Neural Network (d-NN) to solve the issues
that occur in the surface codes. They proved that all NN-based
decoders struggle for scalability because of the exponential rise
in training samples for effective decoding [11]. H. Wang ef al.
developed an efficient decoder that operates adequately to
prevent data-squeezing issues in NN-based decoders [20].
Smith et al. explored the power of QAOA for surface code
correction for NISQ devices. However, this research effectively
optimizes the bit-flip and phase-flip errors arising in the
quantum circuit but faces the difficulty of overestimation and
poor latency during the training phase [21].

However, various researchers found initial success in dealing
with the surface codes with ML-based methods, but many have
still faced challenges. The research by N. Delfosse et al.
expressed problems in coping with the intricacy of longer
distances by the neural decoder. The work of Patra et al.
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highlighted limitations of the convolution-based method in the
effective representation of error syndrome associated with the
specified topological code [22]. The primary constraint on
pairwise readout is the fact that the two-qubit subspace can only
yield a single bit of information. Three methods to get over this
restriction and take advantage of the extra ancilla qubit are
provided below. This can guarantee that no single circuit error
event can cause errors that shorten the surface code's code
distance [23].

The above literature review reveals that a plethora of research
studies have explored the applicability of ML-based methods
for effective handling of surface code, which have produced
both promising and challenging outcomes. However, hardly
any study has explored leveraging the complementary
properties of QAOA and QNN for effective syndrome decoding
in surface codes. This research gap motivates us to conduct the
present research study.

3. RESEARCH METHODOLOGY

The primary goal of this work is to improve the QEC decoding
performance for surface code by leveraging the mutual
strengths and complementary benefits of the proposed hybrid
QAOA-QNN decoder to meet the error threshold. The input is
assigned as data qubits and additional redundant information is
assigned as ancilla qubits initialized through the quantum states.
The surface code encodes the information in the quantum state
using the topological properties of stabilizers. The encoded data
may get corrected while being transmitted over a noisy channel.
The stabilizer generates a syndrome vector to determine the
exact location and frequency of an error in the encoded state.
The most expensive process is detecting and correcting such
errors during encoding. Several detectors, including ML
approaches, that have nearly ideal error correction rates have
been presented in the literature. The QNN classifier is trained
to predict the optimal parameter for decoding syndrome that can
effectively optimize accuracy, computational speed, and
scalability. This method enhances decoding performance for
quantum error correction by combining the flexibility and
efficiency associated with classical neural networks with the
optimization characteristics of QAOA.
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Figure 1: Proposed Methodology for Hybrid QAOA-QNN
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The schematic representation of the methodology used in this
study is illustrated in Figure 1, envisaging the complicated
interplay of the proposed model for more robust and accurate
quantum error correction.

A crucial first step toward the development of syndrome
decoding of quantum computing is the emergence of QEC
codes. Since surface codes can be easily expressed in local
stabilizer formalism and are relatively easy to analyze, to
convert ‘I’ logical qubits into 'k’ physical qubits in a 2%-
dimensional Hilbert space (H.) created by placing actual
qubits on the edges of the lattice. In simple terms, only a certain
number of qubits are influenced by each stabilizer generator of
a surface code, which is not easy to decode because the
syndrome only reveals the boundaries of surface error
sequences. The data and ancilla qubits are initialized in
quantum states to rectify errors. The computation would be
ruined if qubits are measured during the process because
measurement collapses the superposition states. To avoid such
unwanted situations, redundant qubits are introduced as ancilla
qubits or collaborator qubits. An operator is applied to detect
such qubits through a parity check known as a syndrome
measurement. For instance, when operators were anti-
commute, an ancilla qubit with Z-ancilla qubit would be able to
detect a Y-error on a data qubit, whereas a Y-ancilla qubit will
detect Z-errors.

3.1. Encoding

Several physical qubits are suppressed into a logical qubit
during the encoding phase. Repetition codes utilize more than
two qubits and the majority value produced from the parity
check is taken as a logical qubit such as [0) 4 = [0) ® [0) ®
|0) = ]000) where the logical qubit |000)is obtained by
encoding three physical qubits and |0).q4. The value of the
logical qubit will remain unchanged if one of the physical
qubits undergoes a bit-flip as Z3|0);q = [001). It can be
evaluated as a logical |0)-qubit in the computation, as most of
the physical qubits are still error-free. However, if most of the
physical qubits underwent the flips Z,3]|0);q = [011) will
result in a ‘logical error’.

3.2. Quantum Channel

The encoder maps the input data to the quantum channel, which
will pass on the output as a mixed state of ‘n’ qubits through the
decoder. A quantum channel for quantum systems 'C’ and 'D’
underlying the Hilbert spaces 'H,' and 'Hp' respectively with
linear operators B(H) and B(Hp) will impart a linear, fully
trace-preserving map I': C = D. The condition ¢ = |@X¢|
will generate a pure quantum state ¢ with a unit rank which
can be described with a normalized vector |@). € H. The ideal
rate of accurate quantum information transmission via the
quantum channel can be characterized by the capacity Q(T)
channel map, I': C — D. Regarding the operational problem of
entanglement creation Q(T'). The inner code '@g.' influences
the rate of entanglement over the channel.

3.3. Syndrome Measurement by Stabilizer Surface Code
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In surface codes, facets serve as stabilizers while the vertices
contain the data qubits encoded into a significantly wider
Hilbert space in a QEC stabilizer protocol. Various values of
observables coupled with operators called stabilizers are used
to mark distinct sectors of this enormous Hilbert space. A
logical qubit in the surface code is created by joining physical
qubits using CNOT gates. Hence, it performs significantly
better than the physical qubit. Error-correcting code can be
applied repeatedly to remedy single-qubit errors. For instance,
an incorrect 'Y'-error can only be impacted by a Z-measurement
and cannot be fixed by 'Y” itself. Table 1 shows the lists of four
eigenstates along with the corresponding eigenvalues
determined by ¥, ¥, and Z,Z, transactions through Bell states.
If Z, error is applied to the state |00) + |11) with eigenvalues
(+1,—1) the state changes to |10) + |01) with eigenvalues
(—=1,41). It is evident that the same ultimate state would also
result from a Z, error. ¥, and Y, errors also have the same
ultimate state. The stabilizers maintaining the quantum states
are crucial for error-correcting codes.

Table 1: Eigenstates with Corresponding Eigenvalues
Associated with Stabilizers

.Y, Z,Z, )
+1 +1 (100) + [11))/V2
+1 -1 (100) — [11))/2
-1 +1 (101) + [10))/V2
-1 -1 (101) = [10))/2

3.4. Syndrome Measurement by Stabilizer Surface Code
In surface codes, the data qubits are arranged in a 2-dimensional
grid protected by stabilizer operations on X- and Z-type
plaquettes. The syndrome is measured through ancilla qubits
without disturbing the data qubit to locate the quantum error. A
typical quantum for ‘Y’ and ‘Z’ stabilizer measurement,
realized through Hadamard (H), CNOT (X), and S (Sdg) gates
in Qiskit, is depicted in Figure 2. The topological arrangement
of data and ancilla qubits in an X-type stabilizer is shown in
Figure 3, with data qubits displayed as green and ancilla qubits
as blue in the surface code grid.
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Figure 2: Circuit for ‘Y’ and ‘Z’ Stabilizer Measurement
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Figure 3: Circuit for measuring Z-type stabilizer

3.5. ML-based Methods for Error Syndrome Decoding

To decode an observed syndrome appearing in the underlying
data, the qubit error (E) steps are taken to identify any
erroneous configuration that restores the condition to the
original code space without resulting in a logical error. The ML
approach firstly defines a decoding problem as a machine
learning classification problem by splitting the error (E) into
the multi-qubit Pauli operators as E = S.C.L where 'S’ is a
stabilizer, 'C’ is a unique Pauli operator, and 'L’ is a logical Pauli
operator. Each input in a classification problem has a low-
dimensional label, while the inputs are typically high-
dimensional. Since uncontaminated errors can be easily
discovered in feed-forward neural networks (NN) while 'L’
having four values i.e. I ) X , 17, or Z can be labelled by assigning
a minimum cost function having an average cross-entropy of
the established cost function as(H(p,y))a —
Y@ nerb-In(Y(X)); where 'T' is the training set made-up of
input values '¥' and desired distributions 'p’. The stochastic
gradient descent to minimize this function can be implemented
using TensorFlow. The training set can be produced by direct
sampling, having a single physical error probability. This
physical error probability is selected to allow for the production
of a wide range of error syndromes while maintaining the
possibility of rectification. For larger codes, the size of the
training set should not more than more than 10® samples, while
sampling of any range is feasible for smaller surface codes. The
weighted output of QNN can be obtained as § =
o (Woo (WX +b_h)) + by, where o(W.%+ D) is the output
produced by individual neurons, W represents the weights, b
represents a bias of a local set and o(x) = (1 + exp(x))™?
represents a non-linear activation function. By assembling the
parameters of weights and biases into vector graphics,
respectively. The QNN output is fed to the QAOA algorithm to
enhance the performance of the error-correcting decoding
syndrome.

4. PROPOSED HYBRID

LEARNING MODEL FOR QEC
The QNN classifier effectively detects errors by locating
errors and determining their frequency of occurrence. This
information is taken as a syndrome vector input that can
emerge through the optimistic QAOA. The QAOA method

MACHINE
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fine-tunes the classifier parameters through successive
iterations by adapting the parameters to enhance the
accuracy, scalability, and syndrome decoding efficiency.
The mechanism for the optimization seems to be an optimal
solution, whose distance from the global optimum to the
value of the returned solution can be verified using an
objective function Q: {0,1}* — R that needs to be optimized.
'i*' is the solution achieved by the approximation algorithm

such that 222 > €" where ' €* ' is the approximation ratio of

max
the maximum value of the optimization function (Q,,4)- The

QAOA alternates between two intervals of controlled evolution
to produce approximations of solutions. A mixing Hamiltonian
(My) along with a problem Hamiltonian (M,) in QAOA
produces these evolutions. The mixing Hamiltonian usually
takes the configuration of a global transverse field as My =
Y%=1Z. The problem Hamiltonian of 'n" qubits can be created
by mapping the classical cost function to a Hamiltonian through
the formula i, = (1 —j,)/2 where j, € {—1,1}. Finally, by
substituting the Pauli operator a; for j,, the cost function Q(j)
is converted into ‘M, such that My |j) = Q(j)|j) and My(l) =
[1—n()]My + n(D)M, where the stroboscopic function

Q
n(l) = {1 Le Alk, describes an alternate between time
0 Le Al

evolutions that are weighted and produced by '‘My" and ‘M,".
The periods during which ‘M," and 'My" influence on the

evolution is defined by the time intervals AlQ (k=2 Lok—1]
and Al = [l,_1, L) . The variational parameters that regulate
the time travel across which ‘My" and 'M," are applied are § =
(B1,.-Bg) and a = (ay,..aq). The evolution operators
V(@) = c™*MH and V,(B) = c™*PMQ are parameterized by
each (B, a;) which are real-valued. These numbers also
characterize the entire algorithmic runtime U = ¥} _, (I8x] +
|a, ). The application of QAOA evolution is made to a state
that is initially set up in the ground state of ‘M’ or
superposition among computational base states to converge
towards the situation w(0) = |WOXW(0)| = |+){+|®*
where the computational basis states of single qubits are
{10), |1)} define [+) = 1/¥2(]0) + |1)). Following the QAOA
development, the state is then provided byyy(U) =
Vo(q) B, a)u(O)Vo(q) (B,a)*. The variational parameters are
optimized by utilizing a traditional optimization procedure
R(B,a) =< Mgy >p, with the QAOA approximation ratio
defined by €= —— RBD with € >€". The optimization QAOA-

max
QNN involves training the parameters of the syndrome

extraction for overall efficiency.

The proposed model is implemented on the Google Colab CPU
platform, with a Python environment with Qiskit libraries
loaded in MS Windows 10. The decoding threshold of a
quantum error correction code is calculated for code distance of
D, = (3,5,7) and D, = (5,7,9) for NN, CNN, and QAOA-
QNN models. Figures 4, 5, and 6 envisage the quantum error
decoding threshold of NN, CNN, and QAOA-based QNN
models for the surface code of distance (3,5,7), respectively.
Similarly, Figures 7, 8, and 9 envisage the quantum error
decoding threshold of NN, CNN, and QAOA-based QNN
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Table 2: Quantum Error Decoding Threshold for Surface
Code Distance
Error Decoding Threshold Value for

Different Models

Codes Distance

QAOA-

based QNN
D, =357 0.129 0.136 0.176
D,=5,7,9 0.152 0.157 0.178

Quantum error decoding threshold is the measure of growth in
logical error rate with an increase in the number of qubits in the
ancilla system. Since the hike in the number of ancillas is a
natural requirement for better error-correcting codes,
maintaining a lower threshold is essential to avoid generating
logical errors during the encoding process. The above
implementation results show that for each model, the error
decoding threshold improves with an increase in code distance.
For the NN model, the threshold value achieved for the code
distance D; = 3,5,7 is 0.129 while for the code distance D, =
5,7,9 is 0.152. Similarly, for the CNN model, the threshold
value achieved for code distance D; = 3, 5,7 is 0.136, while for
the code distance D, =5,7,9 is 0.157. QAOA-based QNN
demonstrates high decoding efficiency with values of 0.176 and
0.178 for code distance D, = 3,5,7, and D, =5,7,9,
respectively. The horizontal and vertical performance in Table
2 reveals that the QAOA-based QNN is the best performer in
comparison to other state-of-the-art models.

5. CONCLUSION

The surface code is an important class of non-Pauli topological
codes to mitigate the errors that arise in quantum circuits. It
successfully utilizes the geometrical properties of stabilizers for
syndrome measurement, but the development of an optimal
decoder is still a long way away. This research proposed and
tested a hybrid QAOA-based QNN decoder that utilizes

ITEE, 13 (6), pp. 19-25, DEC 2024

complementary benefits of QAOA and QNN to achieve a better
decoding threshold for optimal quantum error correction. The
performance evaluation of the proposed model shows that the
proposed model achieved the highest threshold of 0.176 and
0.178 for the code distance of D; = (3,5,7) and D, = (5,7,9)
respectively. The study concludes that QAOA-based QNN
exhibits better accuracy, scalability, and efficiency in syndrome
decoding for robust quantum error correction. The study also
reveals that the error correction threshold improves with code
distance. Therefore, a wider scope exists to expand this research
for higher code distances.
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