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ABSTRACT  
Surface code is an important class of topological quantum error correction codes that utilizes geometrical properties of stabilizers 

to detect and correct quantum errors by measuring the error syndromes. Though surface code is an effective strategy for fault-

tolerant quantum computing, the fragile nature of qubits and noisy gate operations reduces the reliability of syndrome 

measurement. Various machine learning algorithms and their quantum counterparts have recently exhibited phenomenal 

superiority in quantum error correction tasks. In this research study, we have proposed a hybrid machine learning approach 

consisting of the Quantum Approximation Optimization Algorithm (QAOA) and Quantum Neural Networks (QNN) to enhance 

the effectiveness of the syndrome decoding in surface codes. The performance of the proposed hybrid machine learning model is 

compared with existing surface code decoding methods viz. Neural Networks (NN) and Coevolutionary Neural Networks (CNN) 

for code distance of 𝐷1 = (3,5,7) and 𝐷2 = (5,7,9) which shows that the hybrid approach achieves a higher threshold of 0.176 

and 0.178, respectively. This superiority of the hybrid quantum machine learning model in decoding syndrome for surface codes 

will be pivotal in the development of a practical, scalable, and robust quantum error correction framework.  
Keywords: Quantum error correction codes, hybrid quantum machine learning model, surface code, syndrome measurement, quantum 

approximate optimization, quantum neural networks. 

 

1. 1.  INTRODUCTION 
Quantum computing is a paradigm shift in the information 

science landscape that offers unbounded and unparalleled 

computational powers. The success of such a phenomenal 

computational approach primarily depends upon the feat of 

quantum error correction (QEC) [1] to protect the information 

(quantum state). The errors appearing in the quantum systems 

are inherently different from their classical counterparts and 

their copying and simultaneous measurement are impossible. 

This issue can be overcome by developing effective quantum 

error-correcting codes by suppressing several physical qubits 

into a single logical qubit by introducing redundant (ancilla) 

qubits and decoding them to extract the original information 

and errors through syndrome measurement [2]. This is typically 

accomplished by encoding a single logical qubit with numerous 

physical qubits to minimize error-proneness while retaining the 

ability to manipulate and measure the logical qubit [1,2]. Such 

QEC codes allow the execution of quantum calculations in a 

noisy environment with errors below a limit set by the 

"quantum error threshold theorem".  

 

Surface code is a topological code that utilizes global 

geometrical properties of error-correcting stabilizers for 

quantum error mitigation by encoding physical qubits into 

logical qubits and decoding by measuring the syndrome with 

ancilla without disturbing the original quantum state 

(information) [3]. Apart from physical errors, the logical qubits 

may also be exposed to errors, if not processed carefully, and 

such an error is known as a logical error. Regretfully, qubits are 

exceptionally sensitive to their environment, and their data may 

be lost due to decoherence or collapse of the quantum state 

during syndrome measurement [3,4]. The errors may also 

propagate among the encoded faulty physical qubits through 

qubit crosstalk and decoherence. Therefore, optimal decoding 

to keep the physical-to-logical error ratio minimum is also 

challenging in the surface codes [5,6]. Various decoders and 

approximation schemes have been developed to overcome the 

issues, but none is a flawless tool [7,8,9].  

 

Various artificial intelligence (AI) approaches have recently 

been explored to decode the surface codes, yielding a promising 

result in overcoming the syndrome measurement issue in 

surface codes [9,10]. Such machine learning (ML) approaches 

convert the syndrome detection problem into a classification 

problem where various traditional methods, such as neural 

networks (NN) and convolution neural networks (CNN), are 

available for effective delivery [11]. A hybrid classical-

quantum algorithm known as the quantum approximate 

optimization algorithm (QAOA) is also an effective tool to 

solve combinatorial optimization problems on noisy 

intermediate-scale quantum computers [12]. QAOA has the 

ability to find the approximate solutions by minimizing the cost 

function, while QNN trains the system by using multiple layers 

of stochastic gradient descent, leveraging the principles of 

quantum mechanics for potential speedups. Therefore, QAOA 

and QNN hold complementary properties in the machine 

learning domain, which can be explored collectively for 

quantum speed-up of a system involving a complex 

Hamiltonian.   

 

This research aims to develop a hybrid machine learning model 

by leveraging the complementary powers of QAOA and QNN 

to enhance the accuracy, scalability, and efficiency in syndrome 

decoding for robust quantum error correction. The QAOA 

module in the model will optimize the task by fine-tuning the 

parameters while the QNN module learns the system from past 

data for effective syndrome decoding without undergoing the 

complex intricacies of ansatz in surface codes. In the rest of this 

paper, section 2 carried out a systematic review of the most 
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recent literature in the regime of machine learning for the 

syndrome decoding task. This section will present an account 

of the existing research gap in the literature as motivation for 

the present study. Section 3 will present the research 

methodology adopted in this paper and the terms required for a 

proper understanding of the subject matter. Section 4 will 

implement the proposed model with an analytical discussion on 

the implementation results. Finally, section 5 will conclude the 

paper with meaningful inferences and present an account of the 

future direction of research in this regime.  

 

2. LITERATURE REVIEW 
 

This section reviews the academic and scholastic literature on 

the state-of-the-art methods and approaches in the domain of 

syndrome decoding through machine learning approaches. M. 

Swathi and B. Rudra developed a reproducible and asymmetric 

approach for identifying and mitigating phase-flip and bit error 

correction. Fixing the issue using this method was simple by 

applying the same error again. The suggested procedure is 

effective in overcoming the decoherence and noise surmounted 

due to entanglement [13]. A. Li et al. used a CNN with a 

hexagonal code to determine the decoding threshold. However, 

their decoder enhances the performance while performing 

poorly in terms of latency and resource utilization [14]. The 

work of D. Bhoumik et al. provided an ML decoder for surface 

codes, which can rectify the depolarizing noise in symmetric 

and asymmetric minimum train-test [15]. M. Sheth et al. 

combined the arbitrary decoders to lower the rates of logical 

errors [16] drastically. R.W.J. Overwater et al. explored fully 

connected NN decoders for short-range surface codes. The 

research aims to achieve competitive decoding performance 

while minimizing the neural network's complexity. The model 

works well for large data sizes while exhibiting overfitting for 

small data sizes [17]. B. Debasmita et al. introduced an ML 

decoder for topological code that enhances decoding 

performance by utilizing a revolutionary gauge equivalency-

based method. The physical error probability serves as the 

pseudo-threshold for a QEC code [18]. Research by C. Kim et 

al. is more relevant to NISQ era requirements. They have 

developed ML-based quantum error mitigation techniques to 

reduce the errors without the requirement of comprehensive 

error characterization [19]. Savvas Varsamopoulos et al. 

applied a distributed Neural Network (d-NN) to solve the issues 

that occur in the surface codes. They proved that all NN-based 

decoders struggle for scalability because of the exponential rise 

in training samples for effective decoding [11]. H. Wang et al. 

developed an efficient decoder that operates adequately to 

prevent data-squeezing issues in NN-based decoders [20]. 

Smith et al. explored the power of QAOA for surface code 

correction for NISQ devices. However, this research effectively 

optimizes the bit-flip and phase-flip errors arising in the 

quantum circuit but faces the difficulty of overestimation and 

poor latency during the training phase [21]. 

 

However, various researchers found initial success in dealing 

with the surface codes with ML-based methods, but many have 

still faced challenges. The research by N. Delfosse et al. 

expressed problems in coping with the intricacy of longer 

distances by the neural decoder. The work of Patra et al. 

highlighted limitations of the convolution-based method in the 

effective representation of error syndrome associated with the 

specified topological code [22]. The primary constraint on 

pairwise readout is the fact that the two-qubit subspace can only 

yield a single bit of information. Three methods to get over this 

restriction and take advantage of the extra ancilla qubit are 

provided below. This can guarantee that no single circuit error 

event can cause errors that shorten the surface code's code 

distance [23].  

 

The above literature review reveals that a plethora of research 

studies have explored the applicability of ML-based methods 

for effective handling of surface code, which have produced 

both promising and challenging outcomes. However, hardly 

any study has explored leveraging the complementary 

properties of QAOA and QNN for effective syndrome decoding 

in surface codes. This research gap motivates us to conduct the 

present research study.  

 

3. RESEARCH METHODOLOGY 
 

The primary goal of this work is to improve the QEC decoding 

performance for surface code by leveraging the mutual 

strengths and complementary benefits of the proposed hybrid 

QAOA-QNN decoder to meet the error threshold. The input is 

assigned as data qubits and additional redundant information is 

assigned as ancilla qubits initialized through the quantum states. 

The surface code encodes the information in the quantum state 

using the topological properties of stabilizers. The encoded data 

may get corrected while being transmitted over a noisy channel. 

The stabilizer generates a syndrome vector to determine the 

exact location and frequency of an error in the encoded state. 

The most expensive process is detecting and correcting such 

errors during encoding. Several detectors, including ML 

approaches, that have nearly ideal error correction rates have 

been presented in the literature. The QNN classifier is trained 

to predict the optimal parameter for decoding syndrome that can 

effectively optimize accuracy, computational speed, and 

scalability. This method enhances decoding performance for 

quantum error correction by combining the flexibility and 

efficiency associated with classical neural networks with the 

optimization characteristics of QAOA.  

 

 
Figure 1: Proposed Methodology for Hybrid QAOA-QNN 
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The schematic representation of the methodology used in this 

study is illustrated in Figure 1, envisaging the complicated 

interplay of the proposed model for more robust and accurate 

quantum error correction.  

 

A crucial first step toward the development of syndrome 

decoding of quantum computing is the emergence of QEC 

codes. Since surface codes can be easily expressed in local 

stabilizer formalism and are relatively easy to analyze, to 

convert ‘𝑙′ logical qubits into ′𝑘′ physical qubits in a  2𝑙-
dimensional Hilbert space (ℋ𝐶) created by placing actual 

qubits on the edges of the lattice. In simple terms, only a certain 

number of qubits are influenced by each stabilizer generator of 

a surface code, which is not easy to decode because the 

syndrome only reveals the boundaries of surface error 

sequences. The data and ancilla qubits are initialized in 

quantum states to rectify errors. The computation would be 

ruined if qubits are measured during the process because 

measurement collapses the superposition states. To avoid such 

unwanted situations, redundant qubits are introduced as ancilla 

qubits or collaborator qubits. An operator is applied to detect 

such qubits through a parity check known as a syndrome 

measurement. For instance, when operators were anti-

commute, an ancilla qubit with 𝑍-ancilla qubit would be able to 

detect a 𝑌-error on a data qubit, whereas a 𝑌-ancilla qubit will 

detect 𝑍-errors.  

 

3.1. Encoding 

Several physical qubits are suppressed into a logical qubit 

during the encoding phase. Repetition codes utilize more than 

two qubits and the majority value produced from the parity 

check is taken as a logical qubit such as  0⟩Lq =  0⟩ ⊗  0⟩ ⊗

 0⟩ =  000⟩ where the logical qubit  000⟩ is obtained by 

encoding three physical qubits and  0⟩Lq. The value of the 

logical qubit will remain unchanged if one of the physical 

qubits undergoes a bit-flip as 𝑍3 0⟩Lq =  001⟩. It can be 

evaluated as a logical  0⟩-qubit in the computation, as most of 

the physical qubits are still error-free. However, if most of the 

physical qubits underwent the flips 𝑍2,3 0⟩Lq =  011⟩ will 

result in a ‘lo ical error’. 

  

3.2. Quantum Channel 

The encoder maps the input data to the quantum channel, which 

will pass on the output as a mixed state of ‘n’ qubits throu h the 

decoder. A quantum channel for quantum systems ′𝐶′ and ′𝐷′ 
underlying the Hilbert spaces ′ℋ𝐶 ′ 𝑎𝑛𝑑 ′ℋ𝐷 ′ respectively with 

linear operators ℬ(ℋ𝐶) and ℬ(ℋ𝐷) will impart a linear, fully 

trace-preserving map Γ: 𝐶 → 𝐷. The condition 𝜑𝐶 =  𝜑⟩⟨𝜑 𝐶 

will generate a pure quantum state 𝜑𝐶  with a unit rank which 

can be described with a normalized vector  𝜑⟩𝐶 ∈ ℋ𝐶 . The ideal 

rate of accurate quantum information transmission via the 

quantum channel can be characterized by the capacity 𝑄(Γ) 
channel map, Γ: 𝐶 → 𝐷. Regarding the operational problem of 

entanglement creation 𝑄(Γ). The inner code ′𝜑𝑅𝐶 ′ influences 

the rate of entanglement over the channel.  

 

3.3. Syndrome Measurement by Stabilizer Surface Code  

In surface codes, facets serve as stabilizers while the vertices 

contain the data qubits encoded into a significantly wider 

Hilbert space in a QEC stabilizer protocol. Various values of 

observables coupled with operators called stabilizers are used 

to mark distinct sectors of this enormous Hilbert space. A 

logical qubit in the surface code is created by joining physical 

qubits using CNOT gates. Hence, it performs significantly 

better than the physical qubit. Error-correcting code can be 

applied repeatedly to remedy single-qubit errors. For instance, 

an incorrect ′𝑌′-error can only be impacted by a 𝑍-measurement 

and cannot be fixed by ′𝑌′ itself. Table 1 shows the lists of four 

eigenstates along with the corresponding eigenvalues 

determined by 𝑌𝑎̂𝑌𝑏̂ and 𝑍𝑎̂𝑍𝑏̂ transactions through Bell states. 

If  𝑍𝑎̂ error is applied to the state  00⟩ +  11⟩ with eigenvalues 

(+1,−1) the state changes to  10⟩ +  01⟩ with eigenvalues 

(−1,+1). It is evident that the same ultimate state would also 

result from a 𝑍𝑏̂ error. 𝑌𝑎̂ and 𝑌𝑏̂ errors also have the same 

ultimate state. The stabilizers maintaining the quantum states 

are crucial for error-correcting codes.  
 

Table 1: Eigenstates with Corresponding Eigenvalues 

Associated with Stabilizers 

𝒀𝒂̂𝒀𝒃̂ 𝒁𝒂̂𝒁𝒃̂  𝝍⟩ 

+𝟏 +1 ( 00⟩ +  11⟩)/√2 

+𝟏 −1 ( 00⟩ −  11⟩)/√2 

−𝟏 +1 ( 01⟩ +  10⟩)/√2 

−𝟏 −1 ( 01⟩ −  10⟩)/√2 

 
3.4. Syndrome Measurement by Stabilizer Surface Code  

In surface codes, the data qubits are arranged in a 2-dimensional 

grid protected by stabilizer operations on X- and Z-type 

plaquettes. The syndrome is measured through ancilla qubits 

without disturbing the data qubit to locate the quantum error. A 

typical quantum for ‘Y’ and ‘Z’ stabilizer measurement, 

realized through Hadamard (H), CNOT (X), and S (Sdg) gates 

in Qiskit, is depicted in Figure 2. The topological arrangement 

of data and ancilla qubits in an X-type stabilizer is shown in 

Figure 3, with data qubits displayed as green and ancilla qubits 

as blue in the surface code grid.  

 

 
Figure 2: Circuit for ‘Y’ and ‘Z’ Stabilizer Measurement 
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Figure 3: Circuit for measuring 𝒁-type stabilizer 

 
3.5. ML-based Methods for Error Syndrome Decoding 

To decode an observed syndrome appearing in the underlying 

data, the qubit error (𝐸) steps are taken to identify any 

erroneous configuration that restores the condition to the 

original code space without resulting in a logical error. The ML 

approach firstly defines a decoding problem as a machine 

learning classification problem by splitting the error (𝐸) into 

the multi-qubit Pauli operators as 𝐸 = 𝑆. 𝐶. 𝐿 where ′𝑆′ is a 

stabilizer, ′𝐶′ is a unique Pauli operator, and ′𝐿′ is a logical Pauli 

operator. Each input in a classification problem has a low-

dimensional label, while the inputs are typically high-

dimensional. Since uncontaminated errors can be easily 

discovered in feed-forward neural networks (NN) while ′𝐿′ 

having four values i.e. 𝐼, 𝑋⃗, 𝑌⃗⃗, 𝑜𝑟 𝑍 can be labelled by assigning 

a minimum cost function having an average cross-entropy of 

the established cost function as〈𝐻(𝑝, 𝑦)〉𝛼 −
∑ 𝑝. 𝑙𝑛(𝑦⃗(𝑥⃗(𝑝⃗,𝑥)∈𝑇 )); where ′𝑇′ is the training set made-up of 

input values ′𝑥⃗′ and desired distributions ′𝑝′. The stochastic 

gradient descent to minimize this function can be implemented 

using TensorFlow. The training set can be produced by direct 

sampling, having a single physical error probability. This 

physical error probability is selected to allow for the production 

of a wide range of error syndromes while maintaining the 

possibility of rectification. For larger codes, the size of the 

training set should not more than more than 106 samples, while 

sampling of any range is feasible for smaller surface codes. The 

weighted output of QNN can be obtained as 𝑦⃗ =

𝜎(𝑊0̂𝜎(𝑊ℎ̂𝑥⃗ + 𝑏ℎ⃗⃗⃗⃗⃗) + 𝑏0⃗⃗ ⃗⃗ , where 𝜎(𝑤⃗⃗⃗. 𝑥⃗ + 𝑏⃗⃗) is the output 

produced by individual neurons, 𝑤⃗⃗⃗ represents the weights, 𝑏⃗⃗ 

represents a bias of a local set and 𝜎(𝑥) = (1 + exp(𝑥))−1 

represents a non-linear activation function. By assembling the 

parameters of weights and biases into vector graphics, 

respectively. The QNN output is fed to the QAOA algorithm to 

enhance the performance of the error-correcting decoding 

syndrome. 

 

4. PROPOSED HYBRID MACHINE 

LEARNING MODEL FOR QEC 
The QNN classifier effectively detects errors by locating 
errors and determining their frequency of occurrence. This 
information is taken as a syndrome vector input that can 
emerge through the optimistic QAOA. The QAOA method 

fine-tunes the classifier parameters through successive 
iterations by adapting the parameters to enhance the 
accuracy, scalability, and syndrome decoding efficiency. 
The mechanism for the optimization seems to be an optimal 
solution, whose distance from the global optimum to the 
value of the returned solution can be verified using an 
objective function 𝑄: {0,1}𝑠 → ℝ that needs to be optimized. 
′𝑖∗′ is the solution achieved by the approximation algorithm 

such that 
𝑄(𝑖∗)

𝑄𝑚𝑎𝑥
≥ ∈∗ where ′ ∈∗ ′ is the approximation ratio of 

the maximum value of the optimization function (𝑄𝑚𝑎𝑥). The 

QAOA alternates between two intervals of controlled evolution 

to produce approximations of solutions. A mixing Hamiltonian 

(𝑀𝐻) along with a problem Hamiltonian (𝑀𝑄) in QAOA 

produces these evolutions. The mixing Hamiltonian usually 

takes the configuration of a global transverse field as 𝑀𝐻 =
∑ 𝑍𝑘
𝑠
𝑘=1 . The problem Hamiltonian of ′𝑛′ qubits can be created 

by mapping the classical cost function to a Hamiltonian through 

the formula 𝑖𝑥 = (1 − 𝑗𝑥)/2 where 𝑗𝑥 ∈ {−1,1}. Finally, by 

substituting the Pauli operator 𝜎𝑥
𝑗
 for 𝑗𝑥, the cost function 𝑄(𝑗) 

is converted into ′𝑀𝑄 ′ such that 𝑀𝑄 𝑗⟩ = 𝑄(𝑗) 𝑗⟩ and 𝑀0(𝑙) =
[1 − 𝑛(𝑙)]𝑀𝐻 + 𝑛(𝑙)𝑀𝑄 where the stroboscopic function 

𝑛(𝑙) = { 
1 : 𝑙 ∈ ∆𝑙𝑘

𝑄

0 : 𝑙 ∈ ∆𝑙𝑘
𝐻
, describes an alternate between time 

evolutions that are weighted and produced by ′𝑀𝐻′ and ‘𝑀𝑄′. 

The periods during which ′𝑀𝑄′ and ′𝑀𝐻′ influence on the 

evolution is defined by the time intervals ∆𝑙𝑘
𝑄 = [𝑙2𝑘−2, 𝑙2𝑘−1] 

and ∆𝑙𝑘
𝐻 = [𝑙2𝑘−1, 𝑙2𝑘 . The variational parameters that regulate 

the time travel across which ′𝑀𝐻′ and ′𝑀𝑄′ are applied are 𝛽 =

(𝛽1, . . 𝛽𝑞) and 𝛼 = (𝛼1, . . 𝛼𝑞). The evolution operators 

𝑉𝐻(𝛼) = 𝑐
−𝑥𝛼𝑀𝐻  and 𝑉𝑄(𝛽) = 𝑐

−𝑥𝛽𝑀𝑄  are parameterized by 

each (𝛽𝑘, 𝛼𝑘) which are real-valued. These numbers also 

characterize the entire algorithmic runtime 𝑈 = ∑ ( 𝛽𝑘 +
𝑞
𝑘=1

 𝛼𝑘 ). The application of QAOA evolution is made to a state 

that is initially set up in the ground state of ′𝑀𝐻′ or 

superposition among computational base states to converge 

towards the situation      𝜇(0) =  Ψ0⟩⟨Ψ(0) =  +⟩⟨+ ⨂𝑠 
where the computational basis states of single qubits are 

{ 0⟩,  1⟩} define  +⟩ = 1/√2( 0⟩ +  1⟩). Following the QAOA 

development, the state is then provided byµ0(𝑈) =

𝑉0
(𝑞)(𝛽, 𝛼)𝜇(0)𝑉0

(𝑞)(𝛽, 𝛼)+. The variational parameters are 

optimized by utilizing a traditional optimization procedure 

𝑅(𝛽, 𝛼) =< 𝑀𝑄  𝛽,𝛼 with the QAOA approximation ratio 

defined by ∈≡
𝑅(𝛽,𝛼)

𝑄𝑚𝑎𝑥
 with  ∈ ≥∈∗. The optimization QAOA-

QNN involves training the parameters of the syndrome 

extraction for overall efficiency.  

 

The proposed model is implemented on the Google Colab CPU 

platform, with a Python environment with Qiskit libraries 

loaded in MS Windows 10. The decoding threshold of a 

quantum error correction code is calculated for code distance of 

𝐷1 = (3,5,7) and 𝐷2 = (5,7,9) for NN, CNN, and QAOA-

QNN models. Figures 4, 5, and 6 envisage the quantum error 

decoding threshold of NN, CNN, and QAOA-based QNN 

models for the surface code of distance (3,5,7), respectively. 

Similarly, Figures 7, 8, and 9 envisage the quantum error 

decoding threshold of NN, CNN, and QAOA-based QNN 
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models for the surface code of distance (5,7,9), respectively. 

The calculated value of the error threshold is summarized in 

Table 2.  

 

 
Figure 4: Quantum Error Decoding Threshold of NN 

Model  

for Surface Code Distance (𝑫𝟏 = 𝟑, 𝟓, 𝟕) 

 

Figure 5: Quantum Error Decoding Threshold of CNN 

Model for Surface Code Distance (𝑫𝟏 = 𝟑, 𝟓, 𝟕) 

 
Figure 6: Quantum Error Decoding Threshold of Hybrid 

QAOA-based QNN Model for Surface Code Distance 

(𝑫𝟏 = 𝟑, 𝟓, 𝟕) 

 

 
Figure 7: Quantum Error Decoding Threshold of NN 

Model  

for Surface Code Distance (𝑫𝟐 = 𝟓, 𝟕, 𝟗) 

 

 
Figure 8: Quantum Error Decoding Threshold of CNN 

Model for Surface Code Distance (𝑫𝟐 = 𝟓, 𝟕, 𝟗) 
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Figure 9: Quantum Error Decoding Threshold of Hybrid 

QAOA-based QNN Model for Surface Code Distance 

(𝑫2 = 𝟓, 𝟕, 𝟗) 

 
Table 2: Quantum Error Decoding Threshold for Surface 

Code Distance 

𝑪𝒐𝒅𝒆𝒔 𝑫𝒊𝒔𝒕𝒂𝒏𝒄𝒆 Error Decodin  Threshold Value for 

Different  odels 

NN CNN QAOA-

based QNN 

𝑫𝟏 = 𝟑, 𝟓, 𝟕 0.129 0.136 0.176 

𝑫𝟐 = 𝟓, 𝟕, 𝟗 0.152 0.157 0.178 

 
Quantum error decoding threshold is the measure of growth in 

logical error rate with an increase in the number of qubits in the 

ancilla system. Since the hike in the number of ancillas is a 

natural requirement for better error-correcting codes, 

maintaining a lower threshold is essential to avoid generating 

logical errors during the encoding process. The above 

implementation results show that for each model, the error 

decoding threshold improves with an increase in code distance. 

For the NN model, the threshold value achieved for the code 

distance 𝐷1 = 3, 5,7 is 0.129 while for the code distance 𝐷2 =
5,7, 9 is 0.152. Similarly, for the CNN model, the threshold 

value achieved for code distance 𝐷1 = 3, 5,7 is 0.136, while for 

the code distance 𝐷2 = 5,7, 9 is 0.157. QAOA-based QNN 

demonstrates high decoding efficiency with values of 0.176 and 

0.178 for code distance 𝐷1 = 3, 5,7, and 𝐷2 = 5,7, 9, 

respectively. The horizontal and vertical performance in Table 

2 reveals that the QAOA-based QNN is the best performer in 

comparison to other state-of-the-art models.  

 

5. CONCLUSION 
The surface code is an important class of non-Pauli topological 

codes to mitigate the errors that arise in quantum circuits. It 

successfully utilizes the geometrical properties of stabilizers for 

syndrome measurement, but the development of an optimal 

decoder is still a long way away. This research proposed and 

tested a hybrid QAOA-based QNN decoder that utilizes 

complementary benefits of QAOA and QNN to achieve a better 

decoding threshold for optimal quantum error correction. The 

performance evaluation of the proposed model shows that the 

proposed model achieved the highest threshold of 0.176 and 

0.178 for the code distance of 𝐷1 = (3,5,7) and 𝐷2 = (5,7,9) 
respectively. The study concludes that QAOA-based QNN 

exhibits better accuracy, scalability, and efficiency in syndrome 

decoding for robust quantum error correction. The study also 

reveals that the error correction threshold improves with code 

distance. Therefore, a wider scope exists to expand this research 

for higher code distances.  

 
Declaration: The authors declare no competing interests. 

There is no ethical issue involved in the data supporting the 

conclusions of this article and will be made available by the 

corresponding authors, without undue reservation. The 

corresponding author contributed to conceptualization, 

methodology, software, investigation, formal analysis, and 

writing–the original draft, while the role of the second author 

is confined to reviewing and editing the paper. The first author 

supervised and reviewed the work at all stages. No funding was 

received from any source for this manuscript's study design, 

preparation, or publication.  

 

REFERENCE 
 

[1] G. Quiroz, P. Titum, P. Lotshaw, P. Lougovski, K. 

Schultz, E. Dumitrescu, and I. Hen, "Quantifying the 

impact of precision errors on quantum approximate 

optimization algorithms," Phys. Rev. X, vol. 11, no. 4, p. 

04482, 2021. doi: 10.1103/PhysRevX.11.04482. 

[2]  Hetényi and J. R. Wootton, "Tailoring quantum error 

correction to spin qubits," Phys. Rev. A, vol. 109, no. 3, p. 

032433, 2024. doi: 10.1103/PhysRevA.109.032433. 

[3]  S. Varsamopoulos, B. Criger, and K. Bertels, "Decoding 

small surface codes with feedforward neural networks," 

Quantum Sci. Technol., vol. 3, no. 1, p. 015004, 2017. doi: 

10.1088/2058-9565/aa955a. 

[4]  M. D. Reed, L. DiCarlo, S. E. Nigg, L. Sun, L. Frunzio, S. 

M. Girvin, and R. J. Schoelkopf, "Realization of three-

qubit quantum error correction with superconducting 

circuits," Nature, vol. 482, no. 7385, pp. 382–385, 2012. 

doi: 10.1038/nature10786. 

[5] J. I. Colless, V. V. Ramasesh, D. Dahlen, M. S. Blok, M. 

E. Kimchi-Schwartz, J. R. McClean, J. Carter, W. A. de 

Jong, and I. Siddiqi, "Computation of molecular spectra 

on a quantum processor with an error-resilient algorithm," 

Phys. Rev. X, vol. 8, no. 1, p. 011021, 2018. doi: 

10.1103/PhysRevX.8.011021D.  

[5] D. Nigg, M. Mueller, E. A. Martinez, P. Schindler, M. 

Hennrich, T. Monz, M. A. Martin-Delgado, and R. Blatt, 

"Quantum computations on a topologically encoded 

qubit," Science, vol. 345, pp. 302–305, 2014. doi: 

10.1126/science.1253742. 

[6]  A. Kandala, A. Mezzacapo, K. Temme, M. Takita, M. 

Brink, J. M. Chow, and J. M. Gambetta, "Hardware-

efficient variational quantum eigensolver for small 

molecules and quantum magnets," Nature, vol. 549, no. 

7671, pp. 242–246, 2017. doi:10.1038/nature23879G. 

Duclos-Cianci and D. Poulin, "Fast decoders for 



 

 

          

 
 

©2012-24 International Journal of Information Technology and Electrical Engineering 

ITEE, 13 (6), pp. 19-25, DEC 2024                                        Int. j. inf. technol. electr. eng. 

25 

ITEE Journal 
Information Technology & Electrical Engineering 

 
 

ISSN: - 2306-708X 

 
 

Volume 13, Issue 6     
December 2024                                                                                                  

topological quantum codes," Phys. Rev. Lett., vol. 104, p. 

050504, 2010. 

[7]  J. R. Wootton and D. Loss, "High threshold error 

correction for the surface code," Phys. Rev. Lett., vol. 109, 

p. 160503, 2012. 

[8] G. Torlai and R. G. Melko, "Neural decoder for 

topological codes," Phys. Rev. Lett., vol. 119, p. 04238, 

2017. 

[9] A. S. Darmawan and D. Poulin, "Decoding quantum error 

correction codes with belief propagation," Phys. Rev. E, 

vol. 97, p. 051302, 2018. 

[10] S. Varsamopoulos, K. Bertels, and C. G. Almudever, 

"Decoding surface code with a distributed neural network-

based decoder," Quantum Machine Intelligence, vol. 2, 

pp. 1-12, 2019. 

[11] R. W. J. Overwater, "Data for: Neural network decoders 

for surface codes," Data Sets in Quantum Computation, 

vol. 3, pp. 1–15, 2021. 

[12] M. Swathi and B. Rudra, "A novel approach for 

asymmetric quantum error correction with syndrome 

measurement," IEEE Access, vol. 10, pp. 44669–44676, 

2022. 

[13] A. Li, F. Li, Q. Gan, and H. Ma, "Convolutional-neural-

network-based hexagonal quantum error correction 

decoder," Appl. Sci., vol. 13, no. 17, p. 9689, 2023. 

[14] D. Bhoumik et al., "Efficient decoding of surface code 

syndromes for error correction in quantum computing," 

Quantum Sci. Technol., vol. 5, no. 1, p. 1, 2021. 

[15] M. Sheth, S. Z. Jafarzadeh, and V. Gheorghiu, "Neural 

ensemble decoding for topological quantum error-

correcting codes," Phys. Rev. A, vol. 101, no. 3, p. 032338, 

2020. 

[16] R. W. J. Overwater, M. Babaie, and F. Sebastiano, 

"Neural-network decoders for quantum error correction 

using surface codes: A space exploration of the hardware 

cost-performance tradeoffs," IEEE Trans. Quantum Eng., 

vol. 3, pp. 1–19, 2022. 

[17] D. Bhoumik, R. Majumdar, D. Madan, D. 

Vinayagamurthy, S. Raghunathan, and S. Sur-Kolay, 

"Efficient syndrome decoder for heavy hexagonal QECC 

via machine learning," ACM Trans. Quantum Comput., 

vol. 5, no. 1, pp. 1–27, 2024. doi: 10.1145/xxxxxx. 

[18] C. Kim, K. D. Park, and J.-K. Rhee, "Quantum error 

mitigation with artificial neural network," IEEE Access, 

vol. 8, pp. 188853–188860, 2020. 

[19] H. Wang, Y. Xue, Y. Qu, X. Mu, and H. Ma, 

"Multidimensional Bose quantum error correction based 

on neural network decoder," npj Quantum Inf., vol. 8, no. 

1, p. 134, 2022. doi: 10.1038/s41534-022-00629-8. 

[20] K. Smith, A. Johnson, and L. Patel, "Leveraging the 

Quantum Approximate Optimization Algorithm (QAOA) 

for Enhanced Decoding in Surface Code Quantum Error 

Correction," Quantum Journal, vol. 5, no. 517, pp. 1-14, 

Aug. 2021. 

[21] B. Patra, A. Vladimirescu, E. Charbon, F. Sebastiano, and 

B. G. Malmberg, "A scalable cryo-CMOS 2-to-20 GHz 

digitally intensive controller for 4×32 frequency 

multiplexed spin qubits/transmons," in Proceedings of the 

IEEE International Solid-State Circuits Conference 

(ISSCC), 2020, pp. 304–306. doi: 

10.1109/ISSCC19947.2020.9062936. 

[22] Y. Ueno, T. Satoh, Y. Nakamura, and T. Fujii, "Qecool: 

Online quantum error correction with a superconducting 

decoder for surface code," in Proceedings of the 58th 

ACM/IEEE Design Automation Conference (DAC), 2021, 

pp. 451–456. doi: 10.1109/DAC18074.2021.9586145. 

 

About Authors 
 

Prof. (Dr.) Seema Verma: She holds the 

position of full professor at the National 

Institute of Technical Teachers' Training 

and Research (NITTTR), Bhopal (MP)-

INDIA, and has more than 24 years of 

teaching and research experience. Prior to 

her current position, she was a professor in 

the Department of Physical Sciences, Banasthali Vidyapith, 

Rajasthan. Prof. Verma is a highly cited researcher who has 

published more than 150 research papers/chapters in 

international journals and conferences, authored many books 

and patents. She has produced various Ph.D.s’ and is currently 

supervising students towards their doctoral research. She has 

acclaimed various awards and honours in her credit and 

delivered various talks in India and abroad. Her research area 

includes communication networks with classical and quantum 

noise, ubiquitous computing, Artificial Intelligence, and 

Machine Learning, etc.  
 

Prof. (Dr.) Savita Kumari Sheoran: She is 

a full Professor in the Department of 

Computer Science and Engineering, Indira 

Gandhi University, Meerpur, Rewari 

(Haryana)-INDIA. She has teaching and 

research experience of more than 20 years 

in different reputed institutes in India and 

abroad. She has published more than 80 

research papers in International Journals 

and Conferences, authored 07 books, 04 international book 

chapters, and one patent. She has research experience in mobile 

computing, quantum computing, blockchain, AI, machine 

learning, and has produced many Ph.D. in Computer Science.  
 

Rakesh Kumar Sheoran: He has a research 

experience of 21 years teaching Physics and 

Education at various levels. Currently, he is 

working as an assistant professor of physics 

and teacher education at the State Institute of 

Advanced Studies in Teacher Education, 

Gurugram (Haryana)-INDIA. Presently, he 

is pursuing a Ph.D. from Banasthali 

Vidyapith, Rajasthan, in the area of quantum error correction 

using AI techniques, and has published 15 research papers and 

2 book chapters in various reputed journals and conferences. He 

has organized various conferences and seminars and possesses 

research interests in quantum computing, quantum error 

correction, AI techniques, and educational administration.

 


