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ABSTRACT

Present work investigates one solution to indoor localization problem. Due to quality degradation of GPS signals in indoor
premises, Extended Kalman filter based processing of preinstalled Wi-Fi access points signals are popularly used for this purpose,
which suffer due to underestimation of error covariance of true system dynamics. A Sigma Point Kalman Filter outperforms
Extended Kalman Filter by achieving higher order accuracy in its computation. Present work implements and demonstrates one
innovative Cooperative Sigma Point Kalman Filter approach which uses two nearest access points’ measurements to compute the
scaling factor during generation of the deterministic sigma points. Received signal strength-based trilateration algorithm is applied
to measure the proximity of the access points based on which the two nearest Wi-Fi access points are selected. This adaptation of
scaling factor incorporates two best measurements in the computation which makes the filter capable of estimating the system
dynamics more accurately. Performance of this proposed scheme is evaluated with 100 Monte Carlo runs in which less than 1
meter of accuracy is found which is comparable with other state of the art algorithms. Moreover, the proposed scheme exhibited

similar performance in fast gait speed as well, in which case, extended Kalman filter based approach did not succeed.
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1. INTRODUCTION

Location based services (LBS) for smartphone device
require optimal estimation of navigation states (position,
velocity, acceleration) of a smartphone [1]. Indoors, quality of
GPS signal suffers attenuation problem [2], [3]. In such
situations, preinstalled Wi-Fi signals are fed into trilateration-
based algorithm to estimate the proximity between the mobile
smartphone and the access points (APs), which, in turn, yields
the estimation of the smartphone’s navigation information [4]—

[71.

A Kalman filter employs linear system equations to capture
the dynamics of the moving object [8], [9]. However, presence
of interference in terms of various obstacles of indoor
environment make the moving object system dynamics
nonlinear which does not fit into Kalman filter paradigm [10],
[11].

As an alternative, Extended Kalman Filter (EKF) has been
used successfully [3], [12], [13]. In EKF approach, the
nonlinear system dynamics is approximated as a linear one
using Taylor series expansion up to first order terms [14]. This
type of linear approximation of nonlinear dynamics suffers due
to inaccurate initialization of system states and scattered
measurements [15]-[17].

In real-time implementation of Wi-Fi signaling based
trilateration algorithm, a person carrying a smartphone is free
to move at her own choice of gait speed. This will lead to non-
uniform arrival of measurements which is the input to the filter.
The EKF in this situation will fail to capture the system
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dynamics correctly. To overcome this problem one Sigma Point
Kalman Filter (SPKF) may be used [18], [19]. Contrary to EKF,
SPKF uses unscented transformation using deterministically
chosen sigma points for better linear approximation of the
nonlinear system dynamics.

In a recent work presented in [20], the scaling factor of
sigma point filter has been determined by combining
measurements of multiple such filters. This cooperative multi
model approach in scaling factor computation has been proven
effective in better capturing of the nonlinear system dynamics.

The present work discusses one cooperative SPKF
(CSPKF) based indoor localization scheme. In this work, a
subject is asked to traverse a pre-planned path with a
smartphone tightly attached to her body. Six different mobile
phones are kept in six different places on or around the path
which will act as the APs. While moving through the path, the
objects’ RSS information is obtained and recorded online in a
smartphone application. This recorded information is then
processed offline to serve the following two objectives.

¢ Optimal estimation of location information of the smartphone
through adaptive CSPKF based approach. The CSPKF uses
two nearest APs signals to deterministically generate sigma
points, which is a novel approach.

e Testing and validation of the proposed approach with
different gait speed of the moving object

Organization of this article is as follows. After this brief
introduction, the description of the work is presented in Section
I1. Results and analysis of simulations are described in Section
111 which is followed by a concluding remark in Section 1V
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2. MATERIALS AND METHODS

For execution of the proposed work, one trajectory is planned
which will be followed by the subjects carrying smartphones
tightly attached to the waist. Six other smartphone devices are
placed at six different positions surrounding the preplanned
trajectory, which will work as the access points (APs) by
turning the Wi-Fi hotspot option on. The trajectory and
placements of the APs are shown in Fig. 1.
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Fig. 1. Trajectory and placement of Aps
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Fig. 2. The proposed CSPKF algorithm
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Received Signal Strength (RSS) values during every traversal
of the trajectory on online mode.

After this online data collection, all the collected data are
taken into a computer. Then the proposed CSPKF approach will
be applied to the collected data as depicted in Figure 2 and
Explained in Section I1.

Discussion on CSPKF

To formulate the CSPKF, the conventional nonlinear
Bayesian estimation model is assumed [16]. The system and
measurement models of the said estimation process is given
as follows:

Xir1 = F(Xk, Vi)

€

Here, xx = [X ¥ Vx W] and zx = [, y] are the state and
measurement vectors respectively. fx and hi are the state
transition matrix and measurement sensitivity matrix. v¢ and
N are the Gaussian system and measurement noises driving
the model.

Zk = hik(Xk, NK)

In the SPKEF, the state distribution is approximated by a set
of weighted points known as sigma points which are
generated using the mean and covariance of the system
states and are chosen in such a way that they capture the
mean and covariance of the distribution accurately. Sigma
Points X are generated as follows:

x0: 5(\:
Xi = X+ (X+A)Pl (2)

X— J(x+ AP

Here, X is the state estimate, X; is the sigma points vector,
P is the state covariance and A is the scaling factor that
affect the spreading and accuracy of the sigma points.

Xit+n =

Determination of scaling factor
There are two choices of determining the scaling factor.

*Fixed value - In this scheme, one fixed value for the
scaling factor is determined through offline
experimentation in a range [0, 3] and will remain constant
through to all iterations.

*Adaptive value - The scaling factor is determined online,
during each iteration of the filter. This makes the SPKF
scheme adaptive to the changing situation which helps in
capturing the nonlinear system dynamics better.

In present work, the selection of scaling factor has been
made adaptive. The highlighted block of Fig. 2 describes
the process of selection of scaling factor in the present
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work. At the end of the measurement update phase of
filter, two APs nearest to the subject smartphone are
chosen. The resultant scaling factor is computed by
averaging the scaling factors of the corresponding SPKFs
of the associated filters. This approach is a new one which
makes the proposed system adaptive to capture the
nonlinear system dynamics at any gait speed.

Mean Propagation

The predicted mean and covariance after nonlinear
transformation f is given by the following equations:

Rierae = f (xkpx) i=0,12,..2n

2n

% — S i
Xk+1lk = § W Xppqik

i=0

xllc+1|k] [xllc+1|k -

521'(+1|k] + Qx 3)

Pk+1|k = XinWfE [xk+1|k

In above mentioned equations, W & WF¢ are taken to be
the weights of system states and covariance [21] which
are calculated following equations below:

W°=—)l
$ (L+ 2
WO:LQ— a?+ B)
¢ L+ 1)
Wl':Wi=7/1
$ € 2L+ A

A= a?(L+ x)—L

Values of Kk = 0, a = 10-3 and B = 2 are typically
considered for this work while L = 4 is the number of
system states.

Prediction and Update

The state and covariance are predicted using the
propagated sigma points, updating for the measurement z

as given below.
2n
2= ) W h(x)
i=0

Vk+1 = Zk+1 — Zk+1lk

PELsj ks = ch (hx) = D) — 27 +R

moWwE (x; — 2k|k—1) (h(x) — DT

“

Pk+1|k+1=
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Updating the state estimates and covariance:
K = PXZ(PZZ)—l

Xk = X1 + K (2 — 2) %)

Py = Pyj—1 — K P K” (6)
3. RESULTS AND DISCUSSIONS

To fulfil the requirement of 100 Monte-Carlo simulations,
five different persons were asked to participate in the data
collection process voluntarily. These subjects were asked
to cover the pre-planned path as depicted in Figure 1 with
different walking speed. At the end of this data collection
phase, participants gait speeds were classified as follows:

a. No. of steps for slow speed of walk -> 75 - 85 steps

b. No. of steps for moderate speed of walk -> 95 - 105
steps

c. No. of steps for fast speed of walk -> 115 - 125 steps

This classification of gait speed commensurate with
human gait speed described by [22, 23]. Subjects are
chosen with different statures which is an important
support towards the reliability and completeness of the
collected data.

Five subjects walked through the pre-planned path 20
times each with fast, moderate and slow speed of walks
as per their convenience. At the end of data collection
phase, 100 sample files were collected for each of three
different paces of walks. Therefore, 3 x 100 = 300 data
files were collected for Monte-Carlo simulation in the
next phase.

In Fig. 3, typical tracking plots of CSPKF algorithm are
shown for slow, moderate and high speed of walks. It
could be seen that, CSPKF is well capable of tracking the
subject optimally in each of these paces of walk.

Functioning of a mobile object tracking filter can be better
understood though  their  acceleration tracking
performance. An optimal motion tracking filter is
expected to track the acceleration accurately. Typical
estimation of acceleration of CSPKF in X and Y
directions for all three paces of walk are plotted in Fig. 4
to 6. Acceleration estimation accuracy has been found
quite satisfactory in all the three cases. As may be seen in
Fig. 4 and Fig. 5, CSPKF is exhibiting < 0.1 meter/s?
acceleration tracking accuracy in slow and moderate
paces of walks which is optimal. More significantly, the
proposed filter shows <0.3 meter/s? accuracy in case of
fast pace of walk as presented in Fig. 6. Fast pace of walk
may incorporate some unmodeled system dynamics
which complicates the estimation process. However, the
proposed filter could manage such intricacy by using the
innovative approach.

During analysis of slow and moderate speed of walks,
both of the EKF and CSPKF based indoor localization
schemes were considered and found performing at par.
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Acceleration Estimation of CSPKF in SLOW Spped of Walk in X - direction

—+ Actual
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Their typical position tracking performances are plotted
in Fig. 7.

During similar experimentation with fast pace of walk,
EKF based algorithm did not converge. However, due to
adaptive scaling factor determination, CSPKF converged
in the said situation and its’ performance was found
satisfactory. One typical estimation of position error of
CSPKF algorithm during fast speed of walk has been
shown in Fig. 8. In this case, the proposed algorithm
exhibited < 1 meter accuracy which is well within
acceptable limit.

For better realization of the performance, 100 Monte
Carlo simulations were conducted for each pace of walk.
Performance of both algorithms on those simulations are
summarized as Root Mean Squared Error (RMSE) of the
final position error and is tabulated in Tab. 1. It may be
observed that, during slow and moderate speed of walk,

EKF and CSPKF algorithms performed at par exhibiting
< 1 meter accuracy which is within acceptable limit.
Notably, proposed CSPKF algorithm performed similar
even during fast speed of walk when EKF failed.
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Fig. 3: Typical CSPKF Position Tracking performance
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Fig. 4: Typical CSPKF Acceleration Tracking
performance for SLOW Speed of Walk
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Fig. 5: Typical CSPKF Acceleration Tracking
performance for Moderate Speed of Walk
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Fig. 6: Typical CSPKF Acceleration Tracking
performance for Fast Speed of Walk
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Fig. 8: Typical CSPKF Position Error plot for Fast pace
of walk
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Table 1: RMSE of Position Errors in 100 Monte-
Carlo Simulations

RMSE of Position estimation error
(in Meter)
Slow Moderate Fast Speed
Speed | Speed Walk
Walk | Walk
EKF 0.8751 | 0.7103 Did Not
Converge
CSPKF | 0.7352 | 0.6676 0.8732

4. CONCLUSION

This work presents one cooperative sigma point Kalman
filter (CSPKF) based solution to indoor localization
problem. A new cooperative scaling factor determination
process for sigma point generation has been introduced.
For this purpose, measurements of two best performing
SPKFs are considered making the filter capable of
capturing the true mean and variances of the system states
accurately even in situations where an EKF fails.
Performance of this new CSPKF approach is evaluated
and compared with that of EKF using Monte-Carlo
simulations for slow, moderate and fast pace of walks.
Simulation results show that the proposed CSPKF
approach exhibit < 1 meter accuracy which is at par with
EKF as well as other state of the art approaches.
Moreover, the proposed CSPKF approach could perform
analogously during fast pace of walk when the EKF
presented diverging performance.

This work is subject to limitations. During data collection
phase, all the measurements were taken with due
consideration without any missing or corrupted data. But
in real time situation, the problem of having missing data
is very common. Furthermore, presence of other types of
wireless signals with similar frequency may cause
interference in the measurements which in turn may affect
the performance of the overall system. Managing such
technical issues are challenging which may open some
scopes of further research.
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