

©2012-25 International Journal of Information Technology and Electrical Engineering

ITEE, 14 (2), pp. 28-36, APR 2025 Int. j. inf. technol. electr. eng.
 28

ITEE Journal
Information Technology & Electrical Engineering

ISSN: - 2306-708X

Volume 14, Issue 2

April 2025

Optimized Task Scheduling and Load Balancing in Edge-Cloud Computing

Using PSO-Based Resource Allocation
1Mahil M, 2Irin Dorathy P E, and 3Nandhitha Sree B

1,3Department of Computer Science and Engineering, Government College of Engineering, Tirunelveli, India

2Department of Electronics and Communication Engineering, Government College of Engineering, Tirunelveli, India

E-mail: 1mahil@gcetly.ac.in, 2irindorathy@gcetly.ac.in, 3nandhithasreeb@gmail.com

ABSTRACT

Efficient task scheduling and resource allocation are critical for performance optimization in edge–cloud computing

environments. Traditional scheduling algorithms such as First-Come-First-Serve (FCFS), Shortest Job First (SJF), and Max-

Min often lead to increased execution times, inefficient load distribution, and excessive energy consumption. With the

growing demand for low-latency services and scalable solutions, edge computing brings computation closer to data sources,

reducing delays and network congestion. This paper proposes a Particle Swarm Optimization (PSO)-based scheduling

mechanism that dynamically adapts to varying load conditions that are categorized as low, moderate, and high. The proposed

approach aims to minimize makespan, energy consumption, and Service-Level Agreement (SLA) violations while improving

load balancing across distributed edge and cloud servers. Simulation results demonstrate that the PSO-based model

significantly outperforms traditional techniques, reducing makespan by 14.88%, energy consumption by 3.78%, load

imbalance by 27.63%, and SLA violations by 2.59% on average. These findings demonstrate the efficiency of PSO in real-

time, heterogeneous edge-cloud environments.

Keywords: Edge Computing, Load Balancing, Particle Swarm Optimization, Resource Allocation, Task Scheduling.

1. INTRODUCTION

 The ability to access computing resources from

anywhere in the world is being enabled by cloud

computing. It has many benefits, like being cheap, pooling

resources, flexibility of service, etc., which makes it a

backbone of enterprise IT solutions and big data processing.

Cloud platforms use virtualization to allocate resources as

needed to multiple users. This ensures loads are managed

effectively. However, as more services are added to the

cloud, the problems of allocating resources, scheduling

tasks, and load balancing become more complex. Because

of the growth of workloads on the cloud, intelligent

scheduling mechanisms are needed to schedule the

execution of tasks while minimizing the delay of processing

and energy consumption [4][5].

 To solve these problems, task scheduling is very

important to allocate loads on virtual machines (VMs)

properly. Classic methods like FCFS, SJF, and Max-Min

use rules to assign tasks, but they often result in wasting

resources and prolonged task execution time [6]. These

conventional methods are not adaptable to workloads that

keep changing, which causes high latency, energy overhead,

and unbalanced distribution of resources [7][8]. The advent

of metaheuristic algorithms has offered new and advanced

solutions for cloud scheduling. These algorithms utilize

optimization techniques to improve efficiency. Recently,

studies have been conducted on hybrid models that include

heuristic and machine learning-based models to allocate

tasks in heterogeneous cloud environments [9][10].

 Edge computing is now becoming the next

alternative to cloud computing by moving workloads closer

to the source of the data. Edge computing refers to the

processing of data nearer to the data source. Unlike the

classical cloud, where processing is done away from the

data, edge computing helps reduce the load on the network

while also increasing speed due to faster processing. This

model helps with useful skills for real-time things like

health monitoring, autonomous types, and the IoT

profession. The coordination between cloud data centers

and edge nodes makes task scheduling in cloud-edge

environments more challenging. Scheduling strategies can

make it efficient to avoid problems with the improper

distribution of workload, like bottlenecking.

 Scheduling approaches based on metaheuristics,

notably PSO, are becoming popular as they offer solutions

for the shortcomings of traditional ones. Swarm intelligent

PSO dynamically optimizes task assignments through

iterative fitness evaluations. It makes load balancing better,

has a lesser delay in execution, and results in better

utilization of resources. Several studies have shown how

well PSO works for optimizing task scheduling. This is

especially the case for Edge Cloud Computing, in which

computational resources are dispersed between cloud and

edge nodes to improve performance and minimize delay

mailto:mahil@gcetly.ac.in
mailto:irindorathy@gcetly.ac.in
mailto:nandhithasreeb@gmail.com

©2012-25 International Journal of Information Technology and Electrical Engineering

ITEE, 14 (2), pp. 28-36, APR 2025 Int. j. inf. technol. electr. eng.
 29

ITEE Journal
Information Technology & Electrical Engineering

ISSN: - 2306-708X

Volume 14, Issue 2

April 2025

[18][19]. Researchers have tried adaptive learning schemes

and hybrid models to improve the efficiency of task

scheduling in heterogeneous environments using

improvements in PSO.

 In the Edge Cloud Computing context, efficient

scheduling of the tasks would be required to manage the

limited availability of resources and fluctuations in the

network. Researchers used PSO-based methods to improve

energy usage and migration of tasks in edge nodes, which

resulted in a great improvement in performance metrics.

Some hybrid models on PSO with other metaheuristic

techniques have been proposed to enhance the basic

scheduling efficiency in dynamic environments, but the

standard PSO is still a reliable choice [22][23]. Table 1

presents a summary of existing surveys and review papers

in the literature, highlighting their year, research domain,

and key contributions in the context of cloud and edge

computing task scheduling.

 This paper contrasts the traditional scheduling

techniques, i.e., FCFS, SJF, and Max-Min, with PSO-based

optimization in the environment. To imitate the workloads

of the cloud, a synthetic dataset is used, and experimental

works are performed to evaluate makespan, energy

consumption, SLA violation, and load balancing efficiency.

The results indicate that PSO-based scheduling can serve as

a strong alternative to traditional heuristic scheduling

techniques. The explanation of the proposed methodology,

experimental results analysis, and conclusion are discussed

in the following sections of the paper.

Table 1: Existing Surveys and Reviews

Ref No. Year Domain Contribution

1 2023 Cloud Computing
Reviewed cloud computing benefits and challenges for scalability and

adaptability.

2 2009 Cloud Computing
Explored basic benefits and implementation challenges of cloud

environments.

3 2019 Edge Computing Discussed the evolution and future directions of edge computing.

4 2024 Edge Computing Outlined sustainability challenges and directions for edge computing.

5 2024 Edge Computing Reviewed edge computing opportunities and challenges.

6 2024 Task Scheduling Proposed cost-aware Max-Min workflow task allocation in cloud systems.

7 2022 Task Scheduling Developed a hybrid differential evolution for efficient cloud task scheduling.

8 2024 Task Scheduling Reviewed load balancing and task scheduling techniques systematically.

9 2021
Scheduling

Algorithms
Reviewed hybrid scheduling algorithms in cloud computing.

10 2022 Task Scheduling Proposed a hybrid PSO-based solution for cloud task scheduling.

11 2022 Fog Computing Reviewed task scheduling in fog and Internet of Everything environments.

12 2024 Resource Scheduling Critically analysed resource scheduling issues and challenges in IaaS clouds.

13 2024
Cloud Task

Scheduling
Reviewed scheduling techniques and applications systematically.

14 2019
Metaheuristic

Scheduling
Proposed hybrid GA-PSO for cloud task scheduling.

15 2023 Cloud Optimization Applied PSO to enhance performance in cloud computing.

16 2015 PSO Scheduling Presented a PSO-based algorithm for cloud task scheduling.

17 2023 PSO Optimization Enhanced PSO algorithm for workflow task scheduling.

18 2022 Adaptive Scheduling Developed AdPSO for cloud task scheduling with adaptiveness.

19 2022
Evolutionary

Scheduling
Proposed CEDCES, an evolutionary scheduler for task graphs.

20 2020
Optimization

Algorithms
Compared population-based optimization for workflow scheduling.

21 2022
Meta-Heuristic

Scheduling
Reviewed hybrid meta-heuristic methods in cloud scheduling.

22 2021
Metaheuristic

Algorithms
Discussed metaheuristic scheduling algorithms in cloud systems.

23 2018 Hybrid PSO Proposed Binary PSOGSA for load balancing in cloud task scheduling.

©2012-25 International Journal of Information Technology and Electrical Engineering

ITEE, 14 (2), pp. 28-36, APR 2025 Int. j. inf. technol. electr. eng.
 30

ITEE Journal
Information Technology & Electrical Engineering

ISSN: - 2306-708X

Volume 14, Issue 2

April 2025

2. PROPOSED METHODOLOGY

 This section describes using PSO for task

scheduling in the cloud-edge environment. The selection of

the dataset, configuring the framework, task scheduling

strategies, and the use of the PSO optimization technique.

2.1 Edge-Cloud Computing

 The experiment involves a cloud-edge

environment where the tasks are dynamically scheduled

between the edge and cloud servers. As shown in Figure 1,

the architecture consists of end devices, edge servers, and a

cloud server, which is used to process the tasks generated

by the end devices either at the edge or through offloading

to the cloud for further computing. Edge computing makes

tasks execute faster because it processes data closer to the

source. The faster execution minimizes the latency and

congestion on the network, while cloud servers execute the

heavier computational tasks.

Figure 1: Edge-Cloud Computing Architecture

2.2 Scheduling Algorithms

 One of the essential and challenging components

of cloud computing is task scheduling. It is the process of

allocating computing tasks efficiently. Scheduling

performance directly influences the effectiveness of the

system, execution time, and energy consumption. This

paper studied three traditional scheduling algorithms,

namely, First Come First Serve (FCFS), Shortest Job First

(SJF), and Max-Min Scheduling, along with a PSO-guided

scheduling mechanism.

• First Come First Serve (FCFS): FCFS is a

straightforward scheduling algorithm that assigns tasks

(Ti) based on their arrival order. It does not consider

task processing time or resource capabilities, leading to

potential inefficiencies in load balancing and execution

time. The FCFS scheduling sequence can be

mathematically represented as shown in Equation (1).

SFCFS = {T1, T2, ..., Tn}

where Ti arrives before Ti+1

(1)

• Shortest Job First (SJF): SJF prioritizes tasks based

on their processing time, executing the shortest tasks

first. This helps to reduce waiting time and increase

makespan efficiency. Undoubtedly, longer tasks may

get suspended and cause the starvation problem. The

SJF task execution sequence follows in Equation (2).

SSJF = {Ti, Tj, ..., Tn}

where P(Ti) ≤ P(Tj) for i < j

(2)

Where P(Ti) represents the processing time of task Ti

and P(Tj) represents the processing time of task Tj.

• Max-Min: Max-Min prioritizes tasks with the longest

processing time, first assigning them to the most

available resource. Larger tasks are executed first while

smaller tasks are delayed to ensure there is no undue

delay. The Max-Min scheduling sequence is defined in

Equation (3).

SMax−Min= {Ti, Tj, ..., Tn}

where P(Ti) ≥ P(Tj) for i < j
(3)

 The idea here is to enhance the use of resources,

but such load balancing may not be optimal. These are the

basic algorithms against which PSO will be tested for

effectiveness in optimizing cloud task scheduling in the

next section.

2.3 Particle Swarm Optimization (PSO)

 PSO works based on the exploration and

exploitation stages, which are used to escape from local

optimum. PSO is used widely for solving scheduling

problems. In cloud and edge computing, PSO applied to

task scheduling minimizes the makespan and energy and

also evenly distributes the load over the servers. Figure 2

shows how the proposed task scheduling framework works.

End devices create tasks that are fed into a task scheduler.

The task scheduler then processes the jobs using one of four

scheduling algorithms (PSO, FCFS, SJF, Max-Min). The

tested tasks are allocated to cloud and edge servers for

execution, and results are analyzed and presented for

performance evaluation.

©2012-25 International Journal of Information Technology and Electrical Engineering

ITEE, 14 (2), pp. 28-36, APR 2025 Int. j. inf. technol. electr. eng.
 31

ITEE Journal
Information Technology & Electrical Engineering

ISSN: - 2306-708X

Volume 14, Issue 2

April 2025

Figure 2. Proposed Task Scheduling Framework

 PSO consists of a swarm of particles in which each

particle is a candidate solution for task scheduling. The

optimization process involves the following steps.

1. Initialization:

• Generate an initial population of particles (task

schedules).

• Assign each particle a random position (initial

schedule) and velocity.

• Evaluate the fitness of each particle based on

performance metrics.

2. Fitness Evaluation:

• Use the fitness function to compute the objective

values for each particle (makespan, energy

consumption, load balance).

3. Update Personal and Global Best:

• Every particle optimizes its own best-known

position (pBest) concerning its best schedule

found so far.

• The best schedule discovered by all particles is

defined as the global best position (gBest).

4. Velocity and Position Update:

 As given in Equation (4), each particle’s velocity

is updated.

𝑣𝑖
𝑡+1 = 𝑤⋅𝑣𝑖

𝑡+𝑐1.𝑟1⋅(𝑝𝐵𝑒𝑠𝑡𝑖−𝑥𝑖
𝑡)

+𝑐2.𝑟2⋅(𝑔𝐵𝑒𝑠𝑡𝑖−𝑥𝑖
𝑡)

(4)

Where:

• vi
t+1 is the updated velocity of particle ‘i’ at

iteration ‘t+1’

• ‘w’ is the inertia weight controlling the trade-

off between exploration and exploitation.

• c1 and c2 are acceleration coefficients for

personal and global influence.

• r1 and r2 are random numbers between 0 and 1.

• xi
t is the current position (schedule) of the

particle.

• pBesti is the personal best schedule found by

the particle.

• gBesti is the global best schedule.

The new position of the particle is updated as shown in

Equation (5).

 𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡+ 𝑣𝑖
𝑡+1 (5)

5. Convergence Check:

• Repeat steps 3-4 until the stopping criterion is met

(fixed iterations or convergence threshold).

• The best schedule (gBest) is chosen as the final

solution.

 PSO assigns tasks to resources located at the edge

or in the cloud according to the scheduling sequence found

that is the best. On edge servers, tasks assigned experience

low latency, while cloud servers execute a heavy load.

3. EXPERIMENTAL RESULTS

 The effectiveness of the recommended

metaheuristic-based scheduling algorithm is investigated

through makespan, energy consumption, load balance, and

SLA violation performance metrics. The results obtained

reveal the efficiency of PSO-based scheduling as against

other traditional algorithms.

3.1 Experimental Setup

 The data set consists of dynamic tasks with

different volumes of processing time for edge or cloud

resources. Table 2 summarizes the configuration

parameters of the experiment. In addition, the scheduling

framework is based on Python using NumPy and

Matplotlib. The PSO algorithm runs through distinct

scheduling strategies for decision-making.

©2012-25 International Journal of Information Technology and Electrical Engineering

ITEE, 14 (2), pp. 28-36, APR 2025 Int. j. inf. technol. electr. eng.
 32

ITEE Journal
Information Technology & Electrical Engineering

ISSN: - 2306-708X

Volume 14, Issue 2

April 2025

Table 2: Experimental Configuration Parameters

PARAMETER VALUE

Number of Tasks 30 to 100 (varies per experiment)

Number of Edge Servers 8 to 15 (random allocation)

Number of Cloud Servers 8 to 15 (random allocation)

Server Capacity 20 to 40 units (random per server)

Energy Consumption 0.5 to 1.5 units per task (random)

Task Processing Time 5 to 40 minutes (random per task)

PSO Iterations 50 to 150 (varies per experiment)

PSO Parameters W = 0.8, C1 = 2.0, C2 = 2.0, Swarm Size = 50

3.2 Performance Metrics

• Makespan (M): This is the sum of the lengths of time

taken to execute all tasks in the system, as given in (6).

 𝑀 =𝑚𝑎𝑥
𝑖∈𝑁
∑ 𝑇𝑖 ∀ 𝑖∈{1,2,...,𝑛} (6)

Where ‘Ti’ is the execution time of task ‘i’. Having a

lower makespan signifies better scheduling.

• Energy Consumption (E): Energy consumption is the

overall energy consumed by the servers while executing

the tasks and is calculated as in Equation 7.

 𝐸 = ∑ 𝑇𝑖 𝑥 𝑃𝑖

𝑁

𝑖=1

 (7)

Where ‘Pi’ represents the power consumption of server

‘i’. A lower energy consumption value shows an

energy-efficient scheduling approach.

• Load Balance (LB): The load balance measures the

standard deviation of any resource utilization across all

the servers, which is defined in Equation (8).

 𝐿𝐵 = √
1

𝑁
 ∑ (𝑈𝑖 − 𝑈)

2

𝑁

𝑖=1

 (8)

Where ‘Ui’ is the utilization of server ‘i’, and ‘U’ is the

average utilization of all servers. Smaller values point

to a more balanced task load.

• SLA Violation (%): It indicates the ratio of non-

deadline met tasks. Moreover, a system can meet the

Quality of Service (QoS) requirement. It is defined by

the following Equation (9).

 𝑆𝐿𝐴 =
𝑁𝑣𝑖𝑜𝑙𝑎𝑡𝑒𝑑
𝑁𝑡𝑜𝑡𝑎𝑙

 𝑥 100 (9)

where Nviolated The number of tasks that missed their

deadline, and Ntotal refers to the number of tasks that

were executed in total. A lower SLA Violation (%)

indicates better scheduling. The better the scheduling,

the better the reliability of our system. Furthermore, it

will meet the QoS constraints. Similarly, they can be

done by minimizing the number of deadlines missed.

3.3 Discussion and Analysis

3.3.1 Scenario Structure:

 The experimental analysis includes three

experiments representing distinct levels of workload

intensity.

• Scenario I (Low Load): 30 tasks are assigned to a

cloud-edge infrastructure with 15 edge servers and 15

cloud servers. Task execution time varies between 5 to

15 time units.

• Scenario II (Moderate Load): 50 tasks are scheduled

across 10 edge servers and 10 cloud servers, with task

execution times ranging from 10 to 25 time units.

• Scenario III (High Load): 100 tasks are scheduled with

only 8 edge and 8 cloud servers, with task execution

times between 15 to 40 time units.

 The four scheduling strategies evaluated in each

scenario are First Come First Serve (FCFS), Shortest Job

First (SJF), Max-Min, and PSO. The assessment examines

four important metrics: overall time taken, energy used,

distribution of tasks, and rate of breach.

3.3.2 Scenario Discussion:

• Scenario I (Low Load):

 Compared to conventional algorithms, PSO shows

better performance in the low-load scenario. The system has

©2012-25 International Journal of Information Technology and Electrical Engineering

ITEE, 14 (2), pp. 28-36, APR 2025 Int. j. inf. technol. electr. eng.
 33

ITEE Journal
Information Technology & Electrical Engineering

ISSN: - 2306-708X

Volume 14, Issue 2

April 2025

a makespan of 14 time units, which is the lowest makespan

achieved. Also, it improves execution time by 26.3% when

compared to FCFS (19 time units). Moreover, it also

improves execution time by 30% when compared to SJF (20

time units). PSO also helps in energy consumption that

reduced to 296.07 units. This is lower by 5.12% than FCFS,

which is 312.08 units. Also, it is lower by 4.2% than SJF,

which is 308.96 units. The efficiency of load balancing is

also increased by 11.5% to FCFS (3.47) and 13.04% to SJF

(3.53) with a deviation of 3.07. PSO lowers SLA violations

to 3.03%, better than FCFS (3.23%) and SJF (3.13%).

Figure 3 shows the performance analysis of FCFS, SJF,

Max-Min, and PSO in Scenario I.

Figure 3. Comparison Metrics of Algorithms (In Scenario I)

• Scenario II (Moderate Load):

 Even under moderate loads, its efficiency

continues to be supreme. When the makespan of PSO is

compared with the makespan of FCFS and SJF, it is found

to be 49 time units. Energy consumption is reduced to

774.18 units with a power cut down of 2.87% as compared

to FCFS (797.04 units) and 3.6% SJF (803.15 units). The

load balance deviation reduces to 5.54, which is 21.3%

better than FCFS (7.04) and 31% better than SJF (8.04). The

PSO mechanism can limit SLA violations to 60.1%, which

is better than FCFS but not much. FCFS has 60.8%, and SJF

has 61.2%. Figure 4 shows the performance assessment of

scheduling algorithms in scenario II.

Figure 4. Comparison Metrics of Algorithms (In Scenario II)

• Scenario III (High Load):

 The PSO was found to be the most robust in the

high-load scenario. The makespan, in this case, is minimized

up to 175 time units, which has reduced the execution time

by 5.4% as against the FCFS (185 time units) and 10.25% as

against the SJF (195 time units). The energy consumption is

also optimized. The PSO consumes 2723.25 units, which is

1% less than FCFS (2751.07 units) and 1.8% less than SJF

(2773.98 units). The load balance deviation is considerably

reduced to 7.38, signifying an improvement of 24.93% when

compared to FCFS (9.83) and 46.45% compared to SJF

(13.79). In addition, violations of the SLA decreased to

83.6%, which is a 2.35% increase over FCFS (84.8%) and a

1.9% increase over SJF (84.2%). Figure 5 discusses the

performance analysis in Scenario III.

©2012-25 International Journal of Information Technology and Electrical Engineering

ITEE, 14 (2), pp. 28-36, APR 2025 Int. j. inf. technol. electr. eng.
 34

ITEE Journal
Information Technology & Electrical Engineering

ISSN: - 2306-708X

Volume 14, Issue 2

April 2025

Figure 5. Comparison Metrics of Algorithms (In Scenario III)

3.3.3 Overall Performance of PSO

 Looking at all three scenarios, we can say that PSO

is much better than all the scheduling algorithms as per

Table 3. The study estimates that, on average, PSO reduces

makespan by 14.88%, energy consumption by 3.78%, load

balance deviation by 27.63%, and SLA violations by 2.59%.

These advancements indicate the enhanced performance of

PSO in minimizing execution time, energy consumption,

load deviation, and SLA violations of resource scheduling.

PSO uses swarm intelligence to allocate tasks to resources

in a dynamic cloud-edge environment, making it a strong

candidate for scheduling optimization.

Table 3: Comparison Table

Metric FCFS SJF Max-Min PSO

Scenario I

Makespan 19 20 16 14

Energy 312.08 308.96 305.23 296.07

Load Balance 3.47 3.53 3.94 3.07

SLA Violation 3.23 3.13 3.23 3.03

Scenario II

Makespan 55 53 49 49

Energy 797.04 803.15 792.68 774.18

Load Balance 7.04 8.04 5.66 5.54

SLA Violation 60.8 61.2 60.2 60.1

Scenario III

Makespan 185 195 181 175

Energy 2751.07 2773.98 2772.71 2723.25

Load Balance 9.83 13.79 8.15 7.38

SLA Violation 84.8 84.2 83.2 82.6

4. CONCLUSION

 This paper proposed a scheduling method based on

particle swarm optimization (PSO), which would increase

the efficiency of the scheduling of the cloud computing task.

The proposed method optimizes the makespan, energy

consumption, and load balancing. A comparison with the

well-known scheduling algorithms FCFS, Max-Min, and

SJF shows that the PSO effectively enhances the scheduling

performance in terms of improved execution time, improved

resource allocation, and reduced energy consumption. These

improvements provide evidence for the effectiveness of PSO

in optimizing the utilization of cloud resources and dynamic

workload management. As cloud computing moves towards

the edge, it is necessary to schedule the tasks efficiently to

reduce latency and get real-time processing. The dynamic

assignment of resources using PSO may be adapted to edge

environments where offloading tasks between cloud and

edge nodes has to be smartly done to balance the

computational load. Along with that, energy footprints and

response times must also be minimized.

©2012-25 International Journal of Information Technology and Electrical Engineering

ITEE, 14 (2), pp. 28-36, APR 2025 Int. j. inf. technol. electr. eng.
 35

ITEE Journal
Information Technology & Electrical Engineering

ISSN: - 2306-708X

Volume 14, Issue 2

April 2025

 For future research, integrate PSO with other

techniques such as GA and GWO to create a hybrid

metaheuristic for performance improvement. Additionally,

reinforcement learning-based adaptive scheduling in cloud-

edge environments will be investigated to optimize task

placement across distributed computing resources in real-

time.

REFERENCES

[1] R. Islam, V. Patamsetti, A. Gadhi, R. M. Gondu, C. M.

Bandaru, S. C. Kesani, and O. Abiona, “The Future of

Cloud Computing: Benefits and Challenges,”

International Journal of Communications, Network

and System Sciences, vol. 16, no. 4, 2023.

[2] D. A. Thomas, “Cloud Computing – Benefits and

Challenges,” The Journal of Object Technology, vol. 8,

no. 3, pp. 37–41, 2009.

[3] B. Patra, A. Tamrakar, and R. Sharma, “Edge

Computing: Evolution, Challenges, and Future

Directions,” Turkish Journal of Computer and

Mathematics Education (TURCOMAT), vol. 10, no. 1,

pp. 741–745, 2019.

[4] P. Arroba, R. Buyya, R. Cárdenas, J. L. Risco-Martín,

and J. M. Moya, “Sustainable Edge Computing:

Challenges and Future Directions,” Software: Practice

and Experience, 2024.

[5] D. Shamoo Excel, “Edge Computing: Opportunities

and Challenges,” World Journal of Advanced Research

and Reviews, vol. 23, no. 03, pp. 585–596, 2024.

[6] M. Raeisi-Varzaneh, O. Dakkak, Y. Fazea et al.,

“Advanced Cost-Aware Max–Min Workflow Tasks

Allocation and Scheduling in Cloud Computing

Systems,” Cluster Computing, vol. 27, pp. 13407–

13419, 2024.

[7] M. Abdel-Basset, R. Mohamed, W. Abd ElKhalik, M.

Sharawi, and K. M. Sallam, “Task Scheduling

Approach in a Cloud Computing Environment Using

Hybrid Differential Evolution,” Mathematics, vol. 10,

4049, 2022.

[8] N. Devi, S. Dalal, K. Solanki et al., “A Systematic

Literature Review for Load Balancing and Task

Scheduling Techniques in Cloud Computing,”

Artificial Intelligence Review, vol. 57, p. 276, 2024.

[9] N. Arora and R. K. Banyal, “Hybrid Scheduling

Algorithms in Cloud Computing: A Review,”

International Journal of Electrical and Computer

Engineering (IJECE), vol. 12, no. 1, pp. 880–895,

2021.

[10] S. Cheikh and J. J. Walker, “Solving Task Scheduling

Problem in the Cloud Using a Hybrid Particle Swarm

Optimization Approach,” International Journal of

Applied Metaheuristic Computing, vol. 13, no. 1, pp.

1–25, 2022.

[11] B. Jamil, H. Ijaz, M. Shojafar, K. Munir, and R. Buyya,

“Resource Allocation and Task Scheduling in Fog

Computing and Internet of Everything Environments:

A Taxonomy, Review, and Future Directions,” ACM

Computing Surveys (CSUR), vol. 54, no. 11s, Article

233, pp. 1–38, 2022.

[12] S. H. H. Madni, M. Faheem, M. Younas, M. H. Masum,

and S. Shah, “Critical Review on Resource Scheduling

in IaaS Clouds: Taxonomy, Issues, Challenges, and

Future Directions,” IET Journal (TJE2), 2024.

[13] O. L. Abraham, M. A. B. Ngadi, J. B. M. Sharif, and

M. K. M. Sidik, “Task Scheduling in Cloud

Environment – Techniques, Applications, and Tools: A

Systematic Literature Review,” IEEE Access, 2024.

[14] A. M. S. Kumar, K. Parthiban, and S. S. Shankar, “An

Efficient Task Scheduling in a Cloud Computing

Environment Using Hybrid Genetic Algorithm -

Particle Swarm Optimization (GA-PSO) Algorithm,”

2019 International Conference on Intelligent

Sustainable Systems (ICISS), Feb. 21–22, Palladam,

India. IEEE, 2019.

[15] Nidhi, M. Nagle, and V. Nagar, “Cloud Computing:

Optimization Using Particle Swarm Optimization to

Improve Performance of Cloud,” EAI Endorsed

Transactions on Internet of Things, vol. 10, Dec. 2023.

[16] A. Xu, Y. Yang, Z. Mi, and Z. Xiong, “Task Scheduling

Algorithm Based on PSO in Cloud Environment,”

2015 IEEE 12th Intl Conf on Ubiquitous Intelligence

and Computing, Aug. 10–14, Beijing, China. IEEE,

2015.

[17] S. H. Anbarkhan and M. A. Rakrouki, “An Enhanced

PSO Algorithm for Scheduling Workflow Tasks in

Cloud Computing,” Electronics, vol. 12, 2580, 2023.

©2012-25 International Journal of Information Technology and Electrical Engineering

ITEE, 14 (2), pp. 28-36, APR 2025 Int. j. inf. technol. electr. eng.
 36

ITEE Journal
Information Technology & Electrical Engineering

ISSN: - 2306-708X

Volume 14, Issue 2

April 2025

[18] S. Nabi, M. Ahmad, M. Ibrahim, and H. Hamam,

“AdPSO: Adaptive PSO-Based Task Scheduling

Approach for Cloud Computing,” Sensors (Basel), vol.

22, no. 3, 920, 2022.

[19] A. Tekawade and S. Banerjee, “CEDCES: A Cost-

Effective Deadline-Constrained Evolutionary

Scheduler for Task Graphs in Multi-Cloud System,”

ArXiv, 2022.

[20] D. Subramoney and C. N. Nyirenda, “A Comparative

Evaluation of Population-Based Optimization

Algorithms for Workflow Scheduling in Cloud-Fog

Environments,” ArXiv, 2020.

[21] S. K. Patel and A. Singh, “Task Scheduling in Cloud

Computing Using Hybrid Meta-Heuristic: A Review,”

ArXiv, 2022.

[22] M. N. Aktan and H. Bulut, “Metaheuristic Task

Scheduling Algorithms for Cloud Computing

Environments,” Concurrency and Computation:

Practice and Experience, 2021.

[23] T. S. Alnusairi, A. A. Shahin, and Y. Daadaa, “Binary

PSOGSA for Load Balancing Task Scheduling in

Cloud Environment,” ArXiv, 2018.

