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ABSTRACT 
 

Efficient task scheduling and resource allocation are critical for performance optimization in edge–cloud computing 

environments. Traditional scheduling algorithms such as First-Come-First-Serve (FCFS), Shortest Job First (SJF), and Max-

Min often lead to increased execution times, inefficient load distribution, and excessive energy consumption. With the 

growing demand for low-latency services and scalable solutions, edge computing brings computation closer to data sources, 

reducing delays and network congestion. This paper proposes a Particle Swarm Optimization (PSO)-based scheduling 

mechanism that dynamically adapts to varying load conditions that are categorized as low, moderate, and high. The proposed 

approach aims to minimize makespan, energy consumption, and Service-Level Agreement (SLA) violations while improving 

load balancing across distributed edge and cloud servers. Simulation results demonstrate that the PSO-based model 

significantly outperforms traditional techniques, reducing makespan by 14.88%, energy consumption by 3.78%, load 

imbalance by 27.63%, and SLA violations by 2.59% on average. These findings demonstrate the efficiency of PSO in real-

time, heterogeneous edge-cloud environments. 

Keywords: Edge Computing, Load Balancing, Particle Swarm Optimization, Resource Allocation, Task Scheduling. 

 

1. INTRODUCTION  

 The ability to access computing resources from 

anywhere in the world is being enabled by cloud 

computing. It has many benefits, like being cheap, pooling 

resources, flexibility of service, etc., which makes it a 

backbone of enterprise IT solutions and big data processing. 

Cloud platforms use virtualization to allocate resources as 

needed to multiple users. This ensures loads are managed 

effectively. However, as more services are added to the 

cloud, the problems of allocating resources, scheduling 

tasks, and load balancing become more complex. Because 

of the growth of workloads on the cloud, intelligent 

scheduling mechanisms are needed to schedule the 

execution of tasks while minimizing the delay of processing 

and energy consumption [4][5]. 

 To solve these problems, task scheduling is very 

important to allocate loads on virtual machines (VMs) 

properly. Classic methods like FCFS, SJF, and Max-Min 

use rules to assign tasks, but they often result in wasting 

resources and prolonged task execution time [6]. These 

conventional methods are not adaptable to workloads that 

keep changing, which causes high latency, energy overhead, 

and unbalanced distribution of resources [7][8]. The advent 

of metaheuristic algorithms has offered new and advanced 

solutions for cloud scheduling. These algorithms utilize 

optimization techniques to improve efficiency. Recently, 

studies have been conducted on hybrid models that include 

heuristic and machine learning-based models to allocate 

tasks in heterogeneous cloud environments [9][10]. 

 Edge computing is now becoming the next 

alternative to cloud computing by moving workloads closer 

to the source of the data. Edge computing refers to the 

processing of data nearer to the data source. Unlike the 

classical cloud, where processing is done away from the 

data, edge computing helps reduce the load on the network 

while also increasing speed due to faster processing. This 

model helps with useful skills for real-time things like 

health monitoring, autonomous types, and the IoT 

profession. The coordination between cloud data centers 

and edge nodes makes task scheduling in cloud-edge 

environments more challenging. Scheduling strategies can 

make it efficient to avoid problems with the improper 

distribution of workload, like bottlenecking. 

 Scheduling approaches based on metaheuristics, 

notably PSO, are becoming popular as they offer solutions 

for the shortcomings of traditional ones. Swarm intelligent 

PSO dynamically optimizes task assignments through 

iterative fitness evaluations. It makes load balancing better, 

has a lesser delay in execution, and results in better 

utilization of resources. Several studies have shown how 

well PSO works for optimizing task scheduling. This is 

especially the case for Edge Cloud Computing, in which 

computational resources are dispersed between cloud and 

edge nodes to improve performance and minimize delay 
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[18][19]. Researchers have tried adaptive learning schemes 

and hybrid models to improve the efficiency of task 

scheduling in heterogeneous environments using 

improvements in PSO.  

 In the Edge Cloud Computing context, efficient 

scheduling of the tasks would be required to manage the 

limited availability of resources and fluctuations in the 

network. Researchers used PSO-based methods to improve 

energy usage and migration of tasks in edge nodes, which 

resulted in a great improvement in performance metrics.  

Some hybrid models on PSO with other metaheuristic 

techniques have been proposed to enhance the basic 

scheduling efficiency in dynamic environments, but the 

standard PSO is still a reliable choice [22][23]. Table 1 

presents a summary of existing surveys and review papers 

in the literature, highlighting their year, research domain, 

and key contributions in the context of cloud and edge 

computing task scheduling. 

 This paper contrasts the traditional scheduling 

techniques, i.e., FCFS, SJF, and Max-Min, with PSO-based 

optimization in the environment. To imitate the workloads 

of the cloud, a synthetic dataset is used, and experimental 

works are performed to evaluate makespan, energy 

consumption, SLA violation, and load balancing efficiency. 

The results indicate that PSO-based scheduling can serve as 

a strong alternative to traditional heuristic scheduling 

techniques. The explanation of the proposed methodology, 

experimental results analysis, and conclusion are discussed 

in the following sections of the paper. 

Table 1:  Existing Surveys and Reviews

Ref No. Year Domain Contribution 

1 2023 Cloud Computing 
Reviewed cloud computing benefits and challenges for scalability and 

adaptability. 

2 2009 Cloud Computing 
Explored basic benefits and implementation challenges of cloud 

environments. 

3 2019 Edge Computing Discussed the evolution and future directions of edge computing. 

4 2024 Edge Computing Outlined sustainability challenges and directions for edge computing. 

5 2024 Edge Computing Reviewed edge computing opportunities and challenges. 

6 2024 Task Scheduling Proposed cost-aware Max-Min workflow task allocation in cloud systems. 

7 2022 Task Scheduling Developed a hybrid differential evolution for efficient cloud task scheduling. 

8 2024 Task Scheduling Reviewed load balancing and task scheduling techniques systematically. 

9 2021 
Scheduling 

Algorithms 
Reviewed hybrid scheduling algorithms in cloud computing. 

10 2022 Task Scheduling Proposed a hybrid PSO-based solution for cloud task scheduling. 

11 2022 Fog Computing Reviewed task scheduling in fog and Internet of Everything environments. 

12 2024 Resource Scheduling Critically analysed resource scheduling issues and challenges in IaaS clouds. 

13 2024 
Cloud Task 

Scheduling 
Reviewed scheduling techniques and applications systematically. 

14 2019 
Metaheuristic 

Scheduling 
Proposed hybrid GA-PSO for cloud task scheduling. 

15 2023 Cloud Optimization Applied PSO to enhance performance in cloud computing. 

16 2015 PSO Scheduling Presented a PSO-based algorithm for cloud task scheduling. 

17 2023 PSO Optimization Enhanced PSO algorithm for workflow task scheduling. 

18 2022 Adaptive Scheduling Developed AdPSO for cloud task scheduling with adaptiveness. 

19 2022 
Evolutionary 

Scheduling 
Proposed CEDCES, an evolutionary scheduler for task graphs. 

20 2020 
Optimization 

Algorithms 
Compared population-based optimization for workflow scheduling. 

21 2022 
Meta-Heuristic 

Scheduling 
Reviewed hybrid meta-heuristic methods in cloud scheduling. 

22 2021 
Metaheuristic 

Algorithms 
Discussed metaheuristic scheduling algorithms in cloud systems. 

23 2018 Hybrid PSO Proposed Binary PSOGSA for load balancing in cloud task scheduling. 
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2. PROPOSED METHODOLOGY 

 This section describes using PSO for task 

scheduling in the cloud-edge environment. The selection of 

the dataset, configuring the framework, task scheduling 

strategies, and the use of the PSO optimization technique. 

2.1 Edge-Cloud Computing 

 The experiment involves a cloud-edge 

environment where the tasks are dynamically scheduled 

between the edge and cloud servers. As shown in Figure 1, 

the architecture consists of end devices, edge servers, and a 

cloud server, which is used to process the tasks generated 

by the end devices either at the edge or through offloading 

to the cloud for further computing. Edge computing makes 

tasks execute faster because it processes data closer to the 

source. The faster execution minimizes the latency and 

congestion on the network, while cloud servers execute the 

heavier computational tasks. 

 

 
 

Figure 1: Edge-Cloud Computing Architecture 

2.2 Scheduling Algorithms 

 One of the essential and challenging components 

of cloud computing is task scheduling. It is the process of 

allocating computing tasks efficiently. Scheduling 

performance directly influences the effectiveness of the 

system, execution time, and energy consumption. This 

paper studied three traditional scheduling algorithms, 

namely, First Come First Serve (FCFS), Shortest Job First 

(SJF), and Max-Min Scheduling, along with a PSO-guided 

scheduling mechanism. 

 

 

• First Come First Serve (FCFS): FCFS is a 

straightforward scheduling algorithm that assigns tasks 

(Ti) based on their arrival order. It does not consider 

task processing time or resource capabilities, leading to 

potential inefficiencies in load balancing and execution 

time. The FCFS scheduling sequence can be 

mathematically represented as shown in Equation (1). 

 
SFCFS = {T1, T2, ..., Tn} 

where Ti arrives before Ti+1 

(1) 

• Shortest Job First (SJF): SJF prioritizes tasks based 

on their processing time, executing the shortest tasks 

first. This helps to reduce waiting time and increase 

makespan efficiency. Undoubtedly, longer tasks may 

get suspended and cause the starvation problem. The 

SJF task execution sequence follows in Equation (2).  

 
SSJF = {Ti, Tj, ..., Tn}  

where P(Ti) ≤ P(Tj) for i < j 

(2) 

Where P(Ti) represents the processing time of task Ti 

and P(Tj) represents the processing time of task Tj. 

 

• Max-Min: Max-Min prioritizes tasks with the longest 

processing time, first assigning them to the most 

available resource. Larger tasks are executed first while 

smaller tasks are delayed to ensure there is no undue 

delay. The Max-Min scheduling sequence is defined in 

Equation (3). 

 
SMax−Min= {Ti, Tj, ..., Tn} 

where P(Ti) ≥ P(Tj) for i < j 
(3) 

 The idea here is to enhance the use of resources, 

but such load balancing may not be optimal. These are the 

basic algorithms against which PSO will be tested for 

effectiveness in optimizing cloud task scheduling in the 

next section.  

2.3 Particle Swarm Optimization (PSO) 

 PSO works based on the exploration and 

exploitation stages, which are used to escape from local 

optimum. PSO is used widely for solving scheduling 

problems. In cloud and edge computing, PSO applied to 

task scheduling minimizes the makespan and energy and 

also evenly distributes the load over the servers. Figure 2 

shows how the proposed task scheduling framework works. 

End devices create tasks that are fed into a task scheduler. 

The task scheduler then processes the jobs using one of four 

scheduling algorithms (PSO, FCFS, SJF, Max-Min). The 

tested tasks are allocated to cloud and edge servers for 

execution, and results are analyzed and presented for 

performance evaluation. 
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Figure 2. Proposed Task Scheduling Framework 

 PSO consists of a swarm of particles in which each 

particle is a candidate solution for task scheduling. The 

optimization process involves the following steps. 

1. Initialization: 

• Generate an initial population of particles (task 

schedules). 

• Assign each particle a random position (initial 

schedule) and velocity. 

• Evaluate the fitness of each particle based on 

performance metrics. 

2. Fitness Evaluation: 

• Use the fitness function to compute the objective 

values for each particle (makespan, energy 

consumption, load balance). 

3. Update Personal and Global Best: 

• Every particle optimizes its own best-known 

position (pBest) concerning its best schedule 

found so far.  

• The best schedule discovered by all particles is 

defined as the global best position (gBest). 

4. Velocity and Position Update: 

 As given in Equation (4), each particle’s velocity 

is updated. 

 
𝑣𝑖
𝑡+1 = 𝑤⋅𝑣𝑖

𝑡+𝑐1.𝑟1⋅(𝑝𝐵𝑒𝑠𝑡𝑖−𝑥𝑖
𝑡)

+𝑐2.𝑟2⋅(𝑔𝐵𝑒𝑠𝑡𝑖−𝑥𝑖
𝑡) 

(4) 

Where: 

• vi
t+1  is the updated velocity of particle ‘i’ at 

iteration ‘t+1’ 

• ‘w’ is the inertia weight controlling the trade-

off between exploration and exploitation. 

• c1 and c2 are acceleration coefficients for 

personal and global influence. 

• r1 and r2  are random numbers between 0 and 1. 

• xi
t is the current position (schedule) of the 

particle. 

• pBesti is the personal best schedule found by 

the particle. 

• gBesti is the global best schedule. 

The new position of the particle is updated as shown in 

Equation (5). 

 𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡+ 𝑣𝑖
𝑡+1 (5) 

5. Convergence Check: 

• Repeat steps 3-4 until the stopping criterion is met 

(fixed iterations or convergence threshold). 

• The best schedule (gBest) is chosen as the final 

solution. 

 PSO assigns tasks to resources located at the edge 

or in the cloud according to the scheduling sequence found 

that is the best. On edge servers, tasks assigned experience 

low latency, while cloud servers execute a heavy load. 

 

3. EXPERIMENTAL RESULTS 

 The effectiveness of the recommended 

metaheuristic-based scheduling algorithm is investigated 

through makespan, energy consumption, load balance, and 

SLA violation performance metrics. The results obtained 

reveal the efficiency of PSO-based scheduling as against 

other traditional algorithms. 

3.1 Experimental Setup 

 The data set consists of dynamic tasks with 

different volumes of processing time for edge or cloud 

resources. Table 2 summarizes the configuration 

parameters of the experiment. In addition, the scheduling 

framework is based on Python using NumPy and 

Matplotlib. The PSO algorithm runs through distinct 

scheduling strategies for decision-making. 
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Table 2: Experimental Configuration Parameters 

PARAMETER VALUE 

Number of Tasks 30 to 100 (varies per experiment) 

Number of Edge Servers 8 to 15 (random allocation) 

Number of Cloud Servers 8 to 15 (random allocation) 

Server Capacity 20 to 40 units (random per server) 

Energy Consumption 0.5 to 1.5 units per task (random) 

Task Processing Time 5 to 40 minutes (random per task) 

PSO Iterations 50 to 150 (varies per experiment) 

PSO Parameters W = 0.8, C1 = 2.0, C2 = 2.0, Swarm Size = 50 

3.2 Performance Metrics 

• Makespan (M): This is the sum of the lengths of time 

taken to execute all tasks in the system, as given in (6). 

 𝑀 =𝑚𝑎𝑥
𝑖∈𝑁
∑ 𝑇𝑖   ∀ 𝑖∈{1,2,...,𝑛} (6) 

Where ‘Ti’ is the execution time of task ‘i’. Having a 

lower makespan signifies better scheduling. 

 

• Energy Consumption (E): Energy consumption is the 

overall energy consumed by the servers while executing 

the tasks and is calculated as in Equation 7. 

 𝐸 = ∑ 𝑇𝑖 𝑥 𝑃𝑖

𝑁

𝑖=1

 (7) 

Where ‘Pi’ represents the power consumption of server 

‘i’. A lower energy consumption value shows an 

energy-efficient scheduling approach.  

 

• Load Balance (LB): The load balance measures the 

standard deviation of any resource utilization across all 

the servers, which is defined in Equation (8). 

 𝐿𝐵 = √
1

𝑁
 ∑ (𝑈𝑖 − 𝑈)

2

𝑁

𝑖=1

 (8) 

Where ‘Ui’ is the utilization of server ‘i’, and ‘U’ is the 

average utilization of all servers. Smaller values point 

to a more balanced task load. 

 

• SLA Violation (%): It indicates the ratio of non-

deadline met tasks. Moreover, a system can meet the 

Quality of Service (QoS) requirement. It is defined by 

the following Equation (9). 

 𝑆𝐿𝐴 = 
𝑁𝑣𝑖𝑜𝑙𝑎𝑡𝑒𝑑
𝑁𝑡𝑜𝑡𝑎𝑙

 𝑥 100 (9) 

where Nviolated The number of tasks that missed their 

deadline, and Ntotal refers to the number of tasks that 

were executed in total. A lower SLA Violation (%) 

indicates better scheduling. The better the scheduling, 

the better the reliability of our system. Furthermore, it 

will meet the QoS constraints. Similarly, they can be 

done by minimizing the number of deadlines missed. 

3.3 Discussion and Analysis 

3.3.1 Scenario Structure: 

 The experimental analysis includes three 

experiments representing distinct levels of workload 

intensity. 

• Scenario I (Low Load): 30 tasks are assigned to a 

cloud-edge infrastructure with 15 edge servers and 15 

cloud servers. Task execution time varies between 5 to 

15 time units. 

 

• Scenario II (Moderate Load): 50 tasks are scheduled 

across 10 edge servers and 10 cloud servers, with task 

execution times ranging from 10 to 25 time units. 

 

• Scenario III (High Load): 100 tasks are scheduled with 

only 8 edge and 8 cloud servers, with task execution 

times between 15 to 40 time units. 

 The four scheduling strategies evaluated in each 

scenario are First Come First Serve (FCFS), Shortest Job 

First (SJF), Max-Min, and PSO.  The assessment examines 

four important metrics: overall time taken, energy used, 

distribution of tasks, and rate of breach. 

3.3.2 Scenario Discussion: 

• Scenario I (Low Load):  

 Compared to conventional algorithms, PSO shows 

better performance in the low-load scenario. The system has 
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a makespan of 14 time units, which is the lowest makespan 

achieved. Also, it improves execution time by 26.3% when 

compared to FCFS (19 time units). Moreover, it also 

improves execution time by 30% when compared to SJF (20 

time units). PSO also helps in energy consumption that 

reduced to 296.07 units. This is lower by 5.12% than FCFS, 

which is 312.08 units. Also, it is lower by 4.2% than SJF, 

which is 308.96 units. The efficiency of load balancing is 

also increased by 11.5% to FCFS (3.47) and 13.04% to SJF 

(3.53) with a deviation of 3.07.  PSO lowers SLA violations 

to 3.03%, better than FCFS (3.23%) and SJF (3.13%). 

Figure 3 shows the performance analysis of FCFS, SJF, 

Max-Min, and PSO in Scenario I.

 

Figure 3. Comparison Metrics of Algorithms (In Scenario I) 

• Scenario II (Moderate Load): 

 Even under moderate loads, its efficiency 

continues to be supreme. When the makespan of PSO is 

compared with the makespan of FCFS and SJF, it is found 

to be 49 time units.  Energy consumption is reduced to 

774.18 units with a power cut down of 2.87% as compared 

to FCFS (797.04 units) and 3.6% SJF (803.15 units). The 

load balance deviation reduces to 5.54, which is 21.3% 

better than FCFS (7.04) and 31% better than SJF (8.04). The 

PSO mechanism can limit SLA violations to 60.1%, which 

is better than FCFS but not much. FCFS has 60.8%, and SJF 

has 61.2%. Figure 4 shows the performance assessment of 

scheduling algorithms in scenario II. 

 

 

Figure 4. Comparison Metrics of Algorithms (In Scenario II) 

• Scenario III (High Load): 

 The PSO was found to be the most robust in the 

high-load scenario. The makespan, in this case, is minimized 

up to 175 time units, which has reduced the execution time 

by 5.4% as against the FCFS (185 time units) and 10.25% as 

against the SJF (195 time units). The energy consumption is 

also optimized. The PSO consumes 2723.25 units, which is 

1% less than FCFS (2751.07 units) and 1.8% less than SJF 

(2773.98 units). The load balance deviation is considerably 

reduced to 7.38, signifying an improvement of 24.93% when 

compared to FCFS (9.83) and 46.45% compared to SJF 

(13.79). In addition, violations of the SLA decreased to 

83.6%, which is a 2.35% increase over FCFS (84.8%) and a 

1.9% increase over SJF (84.2%). Figure 5 discusses the 

performance analysis in Scenario III. 
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Figure 5. Comparison Metrics of Algorithms (In Scenario III) 

3.3.3 Overall Performance of PSO 

 Looking at all three scenarios, we can say that PSO 

is much better than all the scheduling algorithms as per 

Table 3. The study estimates that, on average, PSO reduces 

makespan by 14.88%, energy consumption by 3.78%, load 

balance deviation by 27.63%, and SLA violations by 2.59%. 

These advancements indicate the enhanced performance of 

PSO in minimizing execution time, energy consumption, 

load deviation, and SLA violations of resource scheduling. 

PSO uses swarm intelligence to allocate tasks to resources 

in a dynamic cloud-edge environment, making it a strong 

candidate for scheduling optimization. 

 

Table 3: Comparison Table 

 

Metric FCFS SJF Max-Min PSO 

Scenario I 

Makespan 19 20 16 14 

Energy 312.08 308.96 305.23 296.07 

Load Balance 3.47 3.53 3.94 3.07 

SLA Violation 3.23 3.13 3.23 3.03 

Scenario II 

Makespan 55 53 49 49 

Energy 797.04 803.15 792.68 774.18 

Load Balance 7.04 8.04 5.66 5.54 

SLA Violation 60.8 61.2 60.2 60.1 

Scenario III 

Makespan 185 195 181 175 

Energy 2751.07 2773.98 2772.71 2723.25 

Load Balance 9.83 13.79 8.15 7.38 

SLA Violation 84.8 84.2 83.2 82.6 

 

 

4. CONCLUSION 

 This paper proposed a scheduling method based on 

particle swarm optimization (PSO), which would increase 

the efficiency of the scheduling of the cloud computing task. 

The proposed method optimizes the makespan, energy 

consumption, and load balancing. A comparison with the 

well-known scheduling algorithms FCFS, Max-Min, and 

SJF shows that the PSO effectively enhances the scheduling 

performance in terms of improved execution time, improved 

resource allocation, and reduced energy consumption. These 

improvements provide evidence for the effectiveness of PSO 

in optimizing the utilization of cloud resources and dynamic 

workload management. As cloud computing moves towards 

the edge, it is necessary to schedule the tasks efficiently to 

reduce latency and get real-time processing. The dynamic 

assignment of resources using PSO may be adapted to edge 

environments where offloading tasks between cloud and 

edge nodes has to be smartly done to balance the 

computational load. Along with that, energy footprints and 

response times must also be minimized. 
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 For future research, integrate PSO with other 

techniques such as GA and GWO to create a hybrid 

metaheuristic for performance improvement. Additionally, 

reinforcement learning-based adaptive scheduling in cloud-

edge environments will be investigated to optimize task 

placement across distributed computing resources in real-

time. 
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