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ABSTRACT

The Mode collapse problem is a common challenge for Generative Adversarial Networks (GANs), which hinders its effectiveness
for anomaly detection types of tasks. In this work, the potential of data augmentation techniques is investigated for the mitigation
of mode collapse problem and the performance improvement of GANs for anomaly detection in cloud environments. For this
research CIC-IDS2018 dataset is leveraged that contains normal and anomalous cloud traffic data, both are labeled for learning.
DCGAN architecture is implemented and trained in the beginning for cloud anomaly detection tasks. The performance of the
system is recorded with the metrics of accuracy, precision, recall and F1 Score. Three types of data augmentation techniques on
Gaussian noise injection, time series augmentation, and scaling are applied with the CIC-IDS2018 dataset in the model. The
performance is again monitored to check the effectiveness of augmentation techniques in mitigating the mode collapse problem
that is indirectly measured with the ROC curves to enhance the overall accuracy and precision of anomaly detection in the cloud.
The system has proved the significance of data augmentation for the improvement of performance in DCGAN models applicable
in cloud environments. Time-based augmentation techniques are proved to be effective for the dynamic nature of cloud network

traffic data with results showing better accuracy than other augmentation techniques.

MSE/MAE graphs have shown the

mitigation of mode collapse problem in the anomaly detection application of DCGAN models.

Keywords: Generative Adversarial Networks, Cloud Anomaly Detection, Mode collapse problem, Data augmentation techniques.

1. INTRODUCTION

Generative Adversarial Networks (GANs) are showing
the powerful performance in the generation of high-quality
samples in various domains of image, video and text-based
content. GANs have a great capability to learn difficult
probability distributions in all kind of data spaces [31].
However, the challenge rises in handling the unbalanced
datasets with insufficient faulty data or redundant data with the
same condition. System can suffer from mode collapse in
producing monotonous new signals and the results are further
imbalanced [33]. Application of GANSs in the area of anomaly
detection in cloud environment is the crucial requirement at this
time. This work aims to study the application of data
augmentation techniques particularly tailored to cloud traffic
data and its impact on mitigating mode collapse in GAN-based
anomaly detection. As there is only limited research on
applying data augmentation for cloud traffic data, the proposed
system fills the gap by performing domain-specific
augmentation for cloud anomaly detection. The system also
quantifies the impact of data augmentation by drawing ROC
curves for the assessment of diversity of generated data to
indicate mode collapse mitigation. The insights and models are
built using the dataset to simulate real-world cloud network
traffic data from AWS environment.

1.1 DCGAN in Cloud Anomaly Detection

A DCGAN (Deep Convolutional Generative Adversarial
Network) plays a vital role in cloud anomaly detection. It learns
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the patterns of normal cloud traffic data and flags any
deviations from those patterns as potential anomalies. It
consists of two parts: a generator and a discriminator [32].
Initially, the generator is trained on real-time and labeled cloud
traffic data that contains information on packet size, resource
usage metrics, and timestamps. It also attempts to generate new
data points that closely resemble real-time cloud traffic. The
discriminator must distinguish between the real cloud traffic
and the data generated by the generator [34]. When the
generator is successful, the discriminator will have difficulty to
tell them apart. When the DCGAN encounters data points with
significant deviation, the discriminator part will be able to
identify the discrepancy with higher confidence [30]. DCGANs
are well-suited for the identification of subtle anomalies in
cloud traffic than any other methods because of their excellence
in capturing complex data patterns [13].

1.2 Mode collapse problem

It is a common challenge addressed in GANs, where the
generator part gets stuck inside a loop, by producing only the
same kind of data points[12]. This will hinder the ability of the
model to detect diverse anomalies. The generated data becomes
homogeneous and unrealistic, which leads to failure in
capturing the true diversity of the real-world data. Mode
collapse essentially causes the computationally expensive
training time of the DCGAN to be wasted. It leads to the model
learning the full scope of the data it was supposed to learn from.
Performance evaluation of DCGAN is based on the metrics that
assess the diversity and realism of the data generated by the
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model. Mode collapse makes this evaluation to be difficult to
gauge the model’s understanding of the data distribution [24].

1.3 Data Augmentation Techniques

Data augmentation is a method to artificially expand the
size and diversity of training data without having to collect
more data points. This can address the issues of overfitting and
improve the model’s performance on generalized, unseen data
[1]. Various augmentation techniques are available based on the
type of data as image, text, or other mixed data. Image
augmentation can be done using Geometric transformations,
color augmentation, or Noise injection. Text augmentation is
performed with syntactic transformations and Back-translation
methods. Other techniques involve mixing data and time
warping etc. The proposed model has the potential to produce
improved accuracy on results by using data augmentation
techniques particularly tailored for cloud traffic data [16].

2. LITERATURE SURVEY

Among the research techniques for Data Augmentation,
Mode collapse mitigation, and application of GANs for cloud
anomaly detection, only limited works have been available to
combine the techniques for mode collapse mitigation in a cloud
environment. A Review work [26] on anomaly detection for
cloud computing environments identifies the corresponding
models in AI methodological areas of machine learning, deep
learning and statistical approaches for the anomaly detection.
The review also point out the concrete application areas which
are addressed by the cloud computing environments and the
related public datasets used in the evaluation process. A survey
work performed on the data augmentation for Deep Learning
[23] which is not specific to cloud data but provides a
foundation for exploring the suitable augmentation techniques.
The methodology of image augmentation technique with
DCGAN from J,Maeda et al. [15] has shown the significance
of augmentation in the context of DCGAN based applications.
A model on the application of augmentation techniques for
image classification in fruit recognition [4] is the base paper for
domain-specific augmentation, for tailoring augmentation to
the particular datatype, adaptable for cloud traffic data.

An Improved GAN Architecture [20] is proposed by the
research for exploring alternative GAN architectures that may
be less susceptible to mode collapse problem. The work has
presented different architectural features and training
procedures applicable to GANs framework. The high quality
images generated by the model were confirmed by a visual
Turing test. The work in reference 2 has discussed the
application of latent variable models for learning both the
probability distribution of the data and the identification of
hidden structures in the data. The work has suggested the
establishment of theoretical relationships among different
methods of learning probability distributions in the data. A
promised work on Spectral Normalization for the mitigation of
mode collapse in GANs [17] paves the way for model formation
and evaluation. The work has confirmed the capability of SN-
GAN:S for the generation of better quality images relative to the
previous training stabilization techniques.
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The application of GANs for Anomaly Detection is
introduced by an influential work named AnoGAN [21]
however it doesn’t address the mode collapse problem. The
work has performed unsupervised learning for the identification
of anomalies in imaging data as candidates for markers.
CloudGAN [29] is one of the state-of-the-art model that
employs an adaptive weighing technique for the optimization
of training process of variational auto-encoders based on
adaptive weights for the enhancement of different layer features
and to avoid indiscrimination and biased learning. A survey
work [7] for the research of deep anomaly detection with the
advancements in 11 fine-grained categories has reviewed the
objective functions, underlying assumptions, advantages and
disadvantages of different methods. A work for combating
Mode Collapse [19] in GAN training has proposed an
optimization algorithm called nudged-Adam (NuGAN) that
uses spectral information to overcome mode collapse. The
work investigated the instabilities occurring during the training
of GANs, focusing on the issue of mode collapse. The
investigation of generalization properties of GANs by
analyzing the flatness of the optima found during training
suggests a promising approach to progress towards stable GAN
training. The model also found a connection between the
spectrum of the Generator and the mode collapse. An algorithm
of manifold guided GAN (MGGAN) [5] was proposed to
leverage a guidance network on existing GAN architecture to
induce generator learning in all modes of data distribution. The
generator avoids mode missing by getting feedback for the
mode coverage of a data distribution from the guidance
network. A type of generative diversity called uniform
diversity relating to u-mode collapse was handled by an
algorithm named UniGAN [35] with a normalizing flow based
generator. A review work [27] on GANs which employs
algorithms to reduce mode collapse problem finds out the
capabilities and issues of GANs. A novel data augmentation
technique [25] proposed for the class imbalance problem and
mode collapse in DCGAN for the realistic tabular data. The
method performs encoding of each column’s data to produce a
feature map for each record and then converted back to its
original tabular form as an intermediate image format. A
technique [18] of introducing an array of co-operative realness
discriminators into the GAN framework to reduce mode
collapse is introduced to generate realistic and diverse images.
Synthesizing data samples by a data augmentation technique'*
in a tabular data environment has proposed to identify the
characteristics of a dataset to provide a better performance. A
technique [28] to adopt an in-depth exploration approach for the
domain of generative machine learning integrated with cloud
services is proposed with MNIST data. The method highlights
the significance in addressing the challenges of data generation
in GPU-enabled computational engines. An approach [22] was
proposed to describe the tools facilitating data augmentation for
the application of task-specific augmentations. The method
proposed the ideas for AI-Gas (AI-Generating algorithms) for
text data augmentation. ‘Easy data augmentation techniques’
[10] is the work to boost performance on text classification
tasks that improves both convolutional and recurrent neural
networks. Extensive ablation studies were performed that
suggests parameters for the practical applications. An anomaly
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detection model [6] proposed in openstack. cloud environment
has used Stacked and Bidirectional LSTM models to build the
neural network.

3. PROPOSED METHODOLOGY

The proposed system employs a CICIDS2018 dataset for
cloud anomaly detection as it contains labeled entries of both
normal and anomalous cloud traffic data. The methodology
involves four steps: 1. Data Acquisition and Preprocessing 2.
GAN model selection and training 3. Data Augmentation
techniques 4. Model performance evaluation. The steps
involved in the model are shown in figure 1 and the following
sections depict this in detail.

3.1 Data Acquisition and Preprocessing

A CICIDS2018 Dataset [9] is selected for Cloud
Anomaly Detection which requires preprocessing to handle
missing values, to scale numerical features and to consider
creating new features with existing ones. Then it is required to
split the data into training, validation and testing sets. Data
Augmentation is to be applied only to the normal traffic data in
order to avoid corrupting anomaly labels. The CICIDS2018
dataset encloses different attack scenarios on Brute-Force,
Heartbleed, Botnet, DoS, DDoS, Web attacks and network
infiltration from inside. The dataset contains the network traffic
captures and system logs of about 420 machines and 30 servers
and includes 80 features extracted traffic using CICFlowMeter-
V3.

3.2 GAN model selection and Training

DCGAN architecture is selected for its effectiveness in
performing anomaly detection task which is as shown in figure
2. The DCGAN model is implemented using TensorFlow
framework. Hyperparameters on learning rate and optimizer
settings are tuned for optimal model performance. Then the
DCGAN model is trained on the preprocessed training data with
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Figure. 1. Outlined Methodology
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separate loss functions suitable for generator and discriminator
components.

3.2.1 Generator (G)

The DCGAN generator (G) creates realistic
representations of benign cloud network traffic patterns on the
basis of training data. Input layer takes as input a random
noise vector (Z) and generates as output a synthetic network
traffic sample G(Z) with the help of convolutional layers. The
size of the noise vector is about 100 dimensions that determines
the complexity of the features that generator can create. There
will be a fully-connected layer after the input layer to transform
Z into a format suitable for subsequent convolutional layers.
The transposed Convolutional layers perform “upsampling”
operations to gradually increase the spatial resolution of the
maps to transform input noised vector into a representation of a
network traffic sample. A Leaky feature ReLU activation
function is applied to introduce non-linearity that allows the
network to learn complex relationship between the input noise
and the generated traffic sample. The final output layer uses a
tanh activation function for the mapping of generated
featuremaps to the range of -1 to 1 representing network traffic
data.

3.2.2 Discriminator (D)

The discriminator (D) will distinguish the real network
traffic samples from the dataset and the synthetic samples of
generator. Input layer takes a network traffic sample from
dataset or a synthetic generated by G as input. Convolutional
layers perform downsampling operations will be used for the
classification of sample as real or fake.The convolution layers
apply filters to the input and extract local features to capture
specific patterns in the network traffic. Leaky ReLU activation
function is used to introduce non-linearity to allow the
discriminator to learn complex relationship in features.
Pooling layer is used to reduce the dimensionality in the feature
maps by max pooling technique. There is a flatten layer that
transforms the final feature maps from a multi-dimensional
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Figure. 2. Architecture of DCGAN Model
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Table. 2. Hyper parameter tuning for the DCGAN anomaly
detection model

Hyperpara Genera | Discri Train | Sample | Anomaly
meter tor minato | ing Quality | Detection
Configurati | Loss r Loss time Metrics (Test
on (Avg.) | (Avg.) | (Epo Set)
chs)

Config 1 Mod Precision: 0.72
(Batch 0075 | 0052 | 50 0der | Recall: 0.68

- ate
Size:32) F1:0.70
Config 2 Precision: 0.78
(Batch 0.048 0.069 100 High Recall: 0.65
Size:128) Fl: 071
Config 3 Moder Precision: 0.70
(SGD 0.082 0.061 75 ate Recall: 0.74
optimizer) F1:0.72
Config 4 Precision: 0.78
E)I}I;l;nsresr Recall: 0.65
ot fay 0.035 | 0.028 | 150 | High
increased
from 5 to F1:0.71
7

format to a one-dimensional vector. A Fully-connected layer is
used to combine the extracted features from the convolution
layers to a single output value. Finally a output layer is
employed to output a probability between 0 and 1 by using
sigmoid activation function. A value that lies closer to 1
indicates the discriminator assuming the sample is real or
normal traffic, while a value closer to 0 indicates a fake or
anomaly.

3.2.3 Anomaly Detection in DCGAN

In training phase, the generator and discriminator
components are trained in adversarial manner. The generator
will have trained on its ability to fool the discriminator by
generating realistic samples, while the discriminator will have
improved its ability in distinguishing real from fake traffic
patterns. After the training process, discriminator will perform
the anomaly detection task. The output of the discriminator
identifies the likelihood of the sample being real i.e., normal
traffic or fake i.e., potential anomaly. Those samples with a low
chance of being real are considered to be the potential
anomalies.

3.2.4 Model tuning for DCGAN

The training process is significantly affected by the tuning
of hyper parameters like learning rates, batch sizes and
optimizers. Grid search or random search is used to find the
optimal hyper parameter values for the anomaly detection task.
The above table 1 indicates the results of hyper parameter
tuning for the DCGAN anomaly detection model built with
TensorFlow.

3.3 Data Augmentation Techniques
Suitably three types of data augmentation techniques' are

selected for cloud traffic data. They are 1. Gaussian Noise
Injection — to add controlled noise to the features available in

ITEE, 14 (4), pp. 01-10, AUG 2025

the dataset. 2. Time Series Augmentation — to apply warping,
jittering for introducing variations in the temporal patterns. 3.
Scaling — for specific features to simulate variations in resource
usage or traffic volume. Then the system needs to be
implemented and integrated with the augmentation results. The
chosen data augmentation techniques are integrated into a data
pipeline for the generation of augmented versions of normal
traffic data in order to feed into the GAN for training purpose.

3.3.1 Gaussian Noise Injection

By means of adding Gaussian noise with a zero mean
( u=0) to the features of a data point, small random variations
around the original values can be introduced [3]. The
magnitude of these variations are controlled by the standard
deviation (o) of the noise. Let X be the original data point
denoted by a feature vector: X=[x1, x2, ..,xn]The noise
injection process is indicated by:
X augmented=X + ¢ (1
Here ¢ is a noise vector of the same dimension of X, contains
random values drawn from the Gaussian distribution
N(0O,0”2).This can be modeled as the conditional probability
distribution of the augmented data point (X augmented) with
the original data point X.
p(X_augmented | X) = p(¢) * p(X_augmented - € | X) 2)
Here p(e) is the probability density function of the Gaussian
noise distribution. Since the noise is added independently, this
term can be simplified to the original data distribution p(X) as:
p(X_augmented | X) = p(c) * p(X) (3)
A convolution operation is applied between original data
distribution p(X) and the noise distribution p(g) to obtain the
overall distribution of the augmented data.

3.3.2 Time series augmentation

Time series data means the sequential data points
representing a value or state over time. This kind of
augmentation artificially creates new time series examples
while preserving the essential temporal characteristics. Here 5
different techniques are applied to implement the time series
augmentation [8].

(1) Time Shifting: This method shifts the entire time series to
forward or backward by a specific number of time steps. By
this kind of augmentation, the model can learn to recognize
patterns regardless of their absolute position in the time series.
The time-shifted series (Y) with a shift of k units on the original
time series of length k units (X) is given by:

Y = [x(k+1), x(k+2), ..., xn,..., x1, x2, ... xk] for k>0, forward

shift) “4)
Y =[xn, x(n-1), ..., x(k+1), xk ..., x1]
(for k<0, backward shift) 5

(2) Time Stretching / Compression: This method stretches or
compresses the time series through varying the interval between
data points. Stretching increases the length of the series and the
compression reduces it. Hence the model can learn patterns
under different temporal scales.

Stretching with a factor s>1 is denoted as,

Yi=(1-alpha) * X[floor(i/s)] + alpha * X[ceil(i/s)] (6)
Here, alpha = i/s — floor(i/s) is the interpolation weight between
the neighbors.
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(3) Adding Noise: This method adds controlled noise to the
time series data points that can make the model to learn
robustness to noise present in real-world data.

(4) Random segment replacement: This method replaces a
random segment of the time series with a segment from another
time series to make the model learn to handle variations in data
patterns within a single sequence.

(5) Frequency Masking: It focuses on the frequency domain
representation of the time series data. This technique intends to
masking out specific frequency bands and performing inverse
transform to obtain a time series with altered frequency content.
This can make the model to learn pattern recognition
independent of specific frequency components.

3.3.3 Scaling

It is the method of simulating variations in resource usage
or traffic volume or employing specific techniques for the
creation of new data points to reflect these variations25. Here
4 different methods are employed for scaling type of data
augmentation.

(1) Random Scaling: 1t scales the entire data point by a random
factor within a predefined range for the resource usage of traffic
volume. The randomly scaled data point (Y) is obtained using
a scaling factor (s) drawn from uniform distribution is denoted
as,

Yi=s * Xi (for all i=1 to n) @)
Here s is a random scaling factor from a uniform distribution
within predefined range of 0.8 to 1.2 to simulate variations in
the range of 80% to 120% of the original resource usage or
traffic volume.

(2) Feature-wise Scaling: 1t scales individual features within
the data points by different random factors to gain more
granular control over the variations in resource usage or traffic
volume. It is denoted by,

Yi=si* Xi (for all i=1 to n) ®)
Here Yi is the i-th feature value in the scaled data point while
s-1 is the random scaling factor drawn from uniform distribution
for simulating independent variations in different resource
types.

(3) Time-warping (for time series data) : It involves stretching
or compressing the time series in order to simulate variations in
the temporal patterns of resource usage.

(4) Combined technique: The above techniques can be
combined for more complex augmentation strategies. As an
example, the entire data points are randomly scaled and then
applied with feature-wise scaling for further variations.

3.4 Performance Evaluation

Initially a Baseline DCGAN model is trained without data
augmentation for establishing a reference point towards
performance comparison. Then separate DCGAN models are
trained with different combinations of data augmentation
techniques from the baseline architecture.  The model
performance is evaluated using the metrics on Accuracy,
Precision, Recall and F1 score. The baseline DCGAN model is
trained on CICIDS2018 dataset with 7 types of network traffic.
The model is trained over 10 days of network traffic with 17%
of the instances are attack traffic. According to the survey
conducted by Joffrey L. Leevy [2], best performance scores for
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the models that were using CICIDS2018 dataset were unusually
high, because of the consequence of model overfitting and also
there were apparent lack of concern in for the class imbalance
in the dataset. Here, in the proposed system, the two drawbacks
are resolved by the application of data augmentation.

4. RESULTS

The baseline DCGAN model’s performance is compared
with the model after the application of different data
augmentation techniques based on various output metrics are as
shown in the following tables from 2 to 8. Table 2 shows the

Table 2. Baseline DCGAN model metrics
Input Parameters Output Metrics

Noise Dimension 100  Accuracy 72%

Generator Learning Rate 0.0002 = Precision 65%

Discriminator Learning 0.0008 = Recall 55%

Rate

Batch Size 64  F1-Score 59%

Epochs 50 Training Time 3
(hours)

Batch size = no. of samples processed together

Table 3. Comparison of Baseline DCGAN and DCGAN
with Gaussian Noise Injection

Input parameters Performance
Input Metrics ~ Baseli ~ Gaussia Output Baseli DCG Differenc
ne n Noise Metrics ne AN @
value Injectio DCG with
n Value AN Gauss
ian
Noise
Inject
ion
Learning 0.001 No Accuracy 78% 89% Potential
Rate Change slight
increase
Batch Size 16 No Precision 70% 82% Potential
Change slight
increase
Number of 80 No Recall 61% 71% Potential
Epochs Change slight
increase
Noise Mean N/A 0 F1-Score 65% 85% Potential
slight
increase
Noise N/A 0.01 Training 4 5 Potential
Standard Time slight
Deviation (hours) increase

Noise mean is Mean value of the injected noise; Noise Standard Deviation Controls
the amount of noise

Table 4. Comparison of Baseline DCGAN and DCGAN
with Time Shifting

Input Baseli  Time Output Baseli DCGAN  Difference
Metrics ne Shiftin Metrics  ne with
value g DCG Time
Value AN Shifting
Learning 0.001 0.0008 Accura | 77% 96% Potential
Rate cy increase
Batch Size 32 64 Precisi 69% 88% Potential
on increase
Number of 120 150 Recall 58% 79% Potential
Epochs increase
Shifting N/A +/-5 F1- 63% 88% Potential
Range units Score increase
Shifting range is set for network Trainin | 5 7 Potential
traffic analysis; g Time increase
(hours)
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Table 5. Comparison of Baseline DCGAN and DCGAN
with Time Stretching / Compression

Input parameters Performance
Input Baseli  Time Outp Baseli DCGAN  Difference
Metrics ne Stretchi ut ne with
value ng/ Metri DCG Time
Compre cs AN Stretchi
ssion ng/
Value Compre
ssion
Learning 0.001 0.0009 Accur | 76% 90% Potential
Rate acy slight
increase
Batch Size | 16 48 Precis = 67% 83% Potential
ion increase
Number 100 120 Recal 57% 75% Potential
of Epochs 1 increase
Stretching = N/A 1.2 F1- 62% 86% Potential
/Compres (Stretch) Score increase
sion /0.8
Factor (compres
s)
Batch size increased for Train 6 8 Potential
efficiency,; Stretching / ing increase
Compression Factor denotes the Time
ratio for scaling the time series (hour
s)

Table 6. Comparison of Baseline DCGAN and DCGAN
with Random Scaling

Input Ba Rando Output  Baseli DCG Difference
Metrics seli  m Metric ne AN

ne Scaling s DCG with

val Value AN Rand

ue om

Scalin
g
Learnin 0.0 No Accura | 75% 82% Potential
g Rate 01 Change cy decrease
Batch 32 No Precisi 68% 75% Potential
Size Change on decrease
Number = 80 No Recall 59% 72% Potential
of Change increase
Epochs
Scaling N/ 08-12 | F1- 63% 73% Similar / slight
Range A Score decrease
Scaling Range defines the Traini 4 5 Potential slight
minimum and Maximum ng increase
scaling factors Time
(hours)

performance metrics of the DCGAN model in the beginning. In
table 3, the effect of applying the Gaussian Noise Injection type
of data augmentation can be found. Initially the noise mean is
set to O then increased gradually with the noise standard
deviation of 0.01. By applying different data augmentation
techniques, thorough increase in the performance can be
recognized by avoiding model overfitting. Table 4, shows the
raise in accuracy after the application of Time shifting based
data augmentation. In table 5, Time stretching / compression-
based augmentation is applied to show the potential increase in
precision and Recall. Table 6 shows the change in metrics after
the application of random scaling in the range of 0.8 to 1.2. In
table 7, the results after the application of Feature-wise scaling
with the scaling methods on StandardScaler, MinMaxScaler are
shown. Table 8 shows the potential increase in accuracy and
Precision with the warping degree of 0.1 applied. Time warping
and Time shifting kind of data augmentation required
tremendous increase in the number of epochs and training time.
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Table 7. Comparison of Baseline DCGAN and DCGAN with
Feature-wise Scaling

Input Basel  Feature- Output Base = DCGAN Difference
Metrics  ine Wise Metrics  line with
value Scaling DC Feature-
Value GA Wise
N Scaling
Learnin = 0.001 No Change | Accura 78% 92% Similar
g Rate cy
Batch 16 No Change | Precisio = 70% 81% Potential
Size n Slight
increase
Numbe 80 No Change | Recall 62% 73% Potential
r of Slight
Epochs increase
Scaler N/A Standard F1- 66% 77% Potential
Type Scaler Score Slight
increase
Scaler Type defines the scaling Trainin 4 4 Similar
method StandardScaler, ¢ Time
MinMaxScaler (hours)

Table 8. Comparison of Baseline DCGAN and DCGAN with
Time-Warping

Input Baseline Time Output Baseline DCGAN Difference
Metrics  value  Warping Metrics  DCGAN with Time
Value Warping
Learning 0.001 0.0008 Accuracy 77% 95% Potential
Rate Increase
Batch Size 32 64 Precision  69% 87% Potential
Increase
Number of 120 150 Recall 58% 80% Potential
Epochs Increase
Warping N/A 0.1 F1-Score 63% 92% Potential
Degree Increase
Warping Degree defines the Training 5 7 Potential
maximum allowed Time Increase
stretching/compression ratio (hours)

The batch size also increased to 64 for the Time stretching and
warping type of augmentation techniques.

S. DISCUSSION

The impact of Data Augmentation Techniques in the mitigation
of mode collapse problem can be assessed by means of
comparing the anomaly detection parameters on Learning
Rate, Accuracy, Precision, Recall and F1 Score as shown in
Figure 3. It can be seen that after the application of data
augmentation, there is a notable improvement in the baseline
model on the different parameters of accuracy, precision, recall
and F1 score. In particular, Time shifting kind of data
augmentation exhibits good results on 96% accuracy and Time
warping results in 95% of accuracy. Feature-wise scaling type
of augmentation gives 81% of precision as the highest value.

Recall value of 80% and F1-score of 92% results from Time-
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Figure 3. Anomaly Detection Performance Comparison of the Baseline DCGAN Model with the Data Augmentation Techniques
applied models on Gaussian noise injection, Time shifting, Time Stretching/Compression, Random Scaling, Feature-wise Scaling

and Time Warping.

Warping kind of data augmentation also this required the 150
number of Epochs as the maximum value. The anomaly
detection results of 15 different attack types and their prediction
percentage are shown in table 9.  The table lists the prediction
percentage after the application of data augmentation as a result
of avoiding mode collapse in the listed attacks of CICIDS2018
dataset. The overall output metrics comparison for the baseline
model with the applied data augmentation techniques are given
in figure 4. Figure 5 shows the ROC curves with improvement
in anomaly detection performance of baseline model after the
application Time Shifting and Feature-wise scaling type of
augmentation with the maximum AUC of 0.95. The system
reveals the mitigation of Mode collapse by showing a
decreasing trend in Mean Absolute Error (MAE) and Mean
Squared Error (MSE) in Figure 6 for the Time Shifting and
Time Warping type of data augmentation. As MSE is more
sensitive to outliers than MAE, it is affected more than MAE
with few outliers. The above results reveal that Time Shifting
and Time Warping are effective augmentation techniques for
DCGAN model in anomaly detection for the network traffic
data. The methods capture temporal dependencies and add
variations in the data patterns. Excessive shifting or warping
kind of transformation distort the underlying data distribution
and the system produces a degrade in performance. Gaussian

ITEE, 14 (4), pp. 01-10, AUG 2025

Noise Injection improves the robustness of the model but also
introduces noise that masks subtle anomalies. However, the
Feature-wise Scaling and Random-Scaling are more suitable for
image type of data and not seem to be effective in cloud network
traffic data with numerical time series of values. The system’s
contribution in DCGAN based Anomaly Detection for Cloud
Environment is listed as follows:

e  The proposed system explores the effectiveness of data
augmentation techniques on specific attack data available
with CICIDS2018 dataset and scales resource usage
metrics for anomaly detection in cloud.

e  The robustness of the model is improved while mitigating
the mode collapse problem in DCGAN as shown with
MAE / MSE graphs.

e  The proposed methodology is applicable to unseen data or
the detection of new kind of anomalies in the CICIDS2018
dataset by avoiding Mode Collapse problem.

6. CONCLUSION

The proposed system has done the evaluation on the
effectiveness of various data augmentation techniques for the
mitigation of mode collapse problem occurring in DCGAN-
based anomaly detection systems particularly tailored for the

Int. j. inf. technol. electr. eng.
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Figure 4. Output Metrics Comparison of the Baseline
DCGAN with Data Augmentation applied models.

cloud environment. With the utilization of CICIDS2018
dataset, it has found that Time-based augmentations on Time
Stretching/Compression, Time Shifting and Time Warping has
led to better performance than noise injection techniques on
Gaussian Noise Injection. Scaling type of data augmentation
on Random scaling and Feature-wise scaling are not effective
in the particular dataset and performance degradation observed.
The lower and more stable error values in the MAE/MSE
graphs revealed the better anomaly detection performance of
the model after the application of data augmentation techniques.
ROC curves have provided more valuable insights into the
trade-off between true positive and false positive rate for the
data augmentation techniques applied model. By the
introduction of diversity with augmentation of training data, the
methodology has significantly improved the model’s ability in
capturing complex distribution of cloud network traffic patterns
ITEE, 14 (4), pp. 01-10, AUG 2025

Table 9. Overall attack prediction percentage for the DCGAN
model with Data Augmentation Techniques

Attack Name Prediction Percentage
%
FTP-BruteForce 99.56
SSH-Bruteforce 99.73
DoS-GoldenEye 99.02
DoS-Slowloris 99.86
DoS-SlowHTTPTest 99.76
DoS-Hulk 99.52
DDoS attacks-LOIC-HTTP 99.03
DDoS-LOIC-UDP 99.15
DDOS-LOIC-UDP 99.25
DDOS-HOIC 99.54
Brute Force -Web 86.26
Brute Force -XSS 78.34
SQL Injection 89.57
Infiltration 89.63
Bot 100
ROC Anomaly Detection

10 i
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Figure 5. ROC Anomaly Detection Comparison of the 2
models.

and resource usages. The proposed methodology has DCGAN
to generate more realistic and diverse synthetic data, hence
resulting in improved anomaly precision, recall and F1-score
than the base-line model. The findings have highlighted the
potential of data augmentation as an effective tool for the
enhancement of efficacy of anomaly detection in the diversified
data of cloud computing environment. Further research could
explore the application of combined application of different
augmentation techniques, developing adaptive augmentation
strategies for the specific attack types, and enhancing the work
to other types of network traffic data. By the systematic
investigation on the impact of different augmentation
techniques, the methodology has proved the development of
robust and effective anomaly detection solution for cloud
environment.
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